

2

Play-by-post RPGs are Alive and Well
by Alexander Hinkley

User Actions Around MVW – Part 1
by Damian Czernous

User Actions Around MVW – Part 2 Associations
by Damian Czernous

CMS-Based Web Application Maintenance Made Easy
with Integrated OO Design
by Jean-Pierre Norguet

Brand Integrity With Effective DevOps
by John Marx with Cigna and Capital One

Actualizing The Potential Shippable Increment
by John Marx

Languages in UIs
by Damian Czernous

Design Patterns in Perl – Part 1
by Pravin Kumar Sinha

Design Patterns in Perl – Part 2
by Pravin Kumar Sinha

Design Patterns in Perl – Part 3
by Pravin Kumar Sinha

Technical Interviewing Technique: Looking for an Intuitive Narrative
by Soumen Sarkar Jeff Edmonds

A Natural Programming Method. Programming with Natural Language
by Tsun-Huai Soo

05
09

34

16

35

21

38
45
56
78

137
143

THE LATEST INNOVTIVE METHODS
IN PROGRAMMING

Copyright © 2014 Hakin9 Media Sp. z o.o. SK

Table of Contents

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

3

Hello Software Developer’s Journal Readers,

Welcome to our first released issue...

SDJ magazine team pleases to announce launching the first issue of the free Open magazine. In this issue,
a lot of tutorials and practice rich articles are embedded for you to develop your SDJ skills and knowledge.
Our ultimate goal is to provide our readers with exactly the knowledge and skills they need in their IT
careers. Hence, we will be very glad to receive your suggestions of workshops, tutorials, what you need
most, etc...

Let’s take a look at what you will engage in this free issue, Our experts will teach you the fundamental
design patterns in Perl. In addition, you will discover the languages in UI and how to maintain your App
localization and reusability. Additionally, you will learn how to improve your mobile product lifecycle and
more of other content-rich articles.

We wish to say “Thank You” and express our gratitude to our experts who contributed to this issue and our
coming workshops, however, we invite other experts for collaboration for the next issue, due in 4 weeks.

Stay Tuned, along the whole summer, we were preparing a set of practical workshops for you to be released
this month.

Python Web Development: Our consultant, J. Tynan Burke, in this workshop, will teach students the basics
and the finer points of web templating, using libraries like Boto for handling static files with Amazon S3,
using services like Heroku to maximize efficiency and more.

iOS8/swift programming: Zhou Yangbo, our technical expert, assists readers in learning how to use Swift
and SpriteKit to programming, AI-Steering Behaviors, use Swift to programming an Vector2D class, create
games in Swift and a lot more.

R programming: Our instructor, Jim Lemon, introduces all about the R programming, fundamentals,
functions, base R statistics, R graphics and more.

IF interested in getting real life technical experiences with our rich content SDJ workshops, ssues, tutorials,
etc., Or want to get in touch with our team, please feel free to contact Gurkan Mercan at
“gurkan.mercan@bsdmag.org”, Contact us TODAY and gain a -14 day- free access to all our workshops
and issues. OR HURRY UP and contact us this WEEK and enjoy our limited annual offer
of subscription for only 300$.

Hope you enjoy the issue.

Slawek Szeremeta
slawek.szeremeta@sdjournal.org

Editor in Chief: Slawek Szeremeta
slawek.szeremeta@sdjournal.org

Editorial Advisory Board: Shahid H Rathore, Craig Thornton,
Hani Ragab, Kishore P V

Special thanks to our Beta testers and Proofreaders who helped
us with this issue. Our magazine would not exist without your
assistance and expertise.

Publisher: Paweł Marciniak

Managing Director: Ewa Dudzic

Production Director: Andrzej Kuca
andrzej.kuca@sdjournal.org

Art. Director: Ireneusz Pogroszewski
ireneusz.pogroszewski@sdjournal.org
DTP: Ireneusz Pogroszewski

Marketing Director: Ewa Dudzic

Publisher: Software Media SK
02-676 Warsaw, Poland
Postepu 17D
email: en@sdjournal.org
website: http://sdjournal.org/

Whilst every effort has been made to ensure the highest qual-
ity of the magazine, the editors make no warranty, expressed
or implied, concerning the results of the content’s usage. All
trademarks presented in the magazine were used for informa-
tive purposes only.

All rights to trademarks presented in the magazine are reserved
by the companies which own them.

DISCLAIMER!
The techniques described in our magazine may be used in
private, local networks only. The editors hold no respon-
sibility for the misuse of the techniques presented or any
data loss.

www.uat.edu > 877.UAT.GEEK

[IT’S IN YOUR DNA]

[GEEKED AT BIRTH]

You can talk the talk.
Can you walk the walk?

LEARN:
Advancing Computer Science
Arti� cial Life Programming
Digital Media
Digital Video
Enterprise Software Development
Game Art and Animation
Game Design
Game Programming
Human-Computer Interaction
Network Engineering
Network Security
Open Source Technologies
Robotics and Embedded Systems
Serious Game and Simulation
Strategic Technology Development
Technology Forensics
Technology Product Design
Technology Studies
Virtual Modeling and Design
Web and Social Media Technologies

Please see www.uat.edu/fastfacts for the latest information about
degree program performance, placement and costs.

mailto:mailto:andrzej.kuca%40sdjournal.org?subject=
mailto:mailto:ireneusz.pogroszewski%40sdjournal.org?subject=
mailto:mailto:en%40sdjournal.org?subject=
http://sdjournal.org/
http://wwww.uat.edu

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

5

Play-by-post RPGs are Alive and Well
by Alexander Hinkley

Play-by-post role playing games (PbPRPGs) are very easy for indie developers to create.
Unlike graphical RPGs or Massively Multiplayer Online RPGs, PbP games do not require
any programming knowledge or coding experience to create other than perhaps some HTML
for working on a website and a firm grasp of RPG mechanics. Play-by-post games instead
utilize forum and/or chat services like instant messenger and players progress character
storylines or perform in-game actions through collaborative creative writing. PbPRPGs
were especially popular in the late 1990’s and early 2000’s. Their popularity has declined in
recent years as gamers have become more enthralled with other – free to play – games such
as League of Legends, but PbPRPGs still have a healthy online presence due in large part to
how simple they are to make. The fact, pretty much anybody can start up their own PbPRPG
means there are literally thousands of active PbPRPGs online at any given moment.

Play-by-post RPGs may be easy for an indie developer to create, but the creation process is still very
complex. The first thing you need to do is to determine the theme you want your game to be set in.
Will it be a fantasy game or will it be a science fiction?, Will it be set in modern days or at some point in the
past? RPGs centered around specific fandoms usually have the most success opposed to an RPG that is a
completely unique world. For example, RPGs that are set in the world of Dragon Ball Z remain one of the
most popular genres for this type of game online. The reason that fandom RPGs work the best is because you
already have a good chunk of your marketing done before you even wrote the first line of HTML for the site.
When you create an RPG based on a fandom, people that are fans of that series at some point are going to
search online for games to play set within that universe.

With a little search engine optimization, your site can rank among the top search results (e.g. Someone
who is searching “DBZ RPG”) which will help you gain more members and exposure. Compare this with
a site that takes place in a unique world that you created and has nothing to do with an existing intellectual
property. Not only you will have to invest time and probably money in heavy advertising so people can
actually find your game, but also you need to convince potential members that it is worth their time to sign
up and play. This isn’t an obstacle for fandom RPGs because those fans of the series already want to play.
One thing that you will need to keep in mind if you chose to create an RPG based on a fandom, is that you
aren’t going to be able to monetize the site whatsoever because you don’t own that intellectual property.

If you’re a small play-by-post RPG with a few dozen members, there are chances that nobody is going to
care about your site. But if you start getting a few hundred members and high levels of traffic, it might be
a good idea to contact the company who owns that IP and ask for permission to keep running the site. This
is the biggest disadvantage of creating an RPG based on an existing series, but it can be worth it if you’re
tapping into a huge audience of fans.

Once you have made up your mind on what theme you want for your PbPRPG, you have to determine what
level of roleplaying you want the game to have. This is called the style. Threads on a play-by-post RPG
can range anywhere from just a few sentences per post to thousands of words per post. Although the latter
is generally thought of as taking more “skill,” the former can also be a lot of fun because it encourages
highly interactive, fast-paced posting. When determining the style of your site, consider the age group and
education level of your target audience. If your site is aimed at younger kids, for example, they probably
aren’t going to be interested in writing up long essay-like posts so a shorter role-playing style would be more
suitable. Longer roleplays fit fantasy RPGs well because most fantasy novels are pretty lengthy (looking at
you, Wheel of Time series). Fantasy fans are used to reading epic books with intricately detailed descriptions
and will want to emulate that writing style in their role plays.

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

6

Figure 1. An InvisionFree forum using a customized template

After you have the theme and style, it is time to start building the game technically. If you’re going to use a
website, then you will need to find a site host, create a layout, and finally start adding content to the site. If
you’re going to use a forum, then you will need to either write forum code or use one of the free online forum
services such as InvisionFree or Proboards. Either one of these is a good choice because they both allow for
customizable layouts that can be downloaded or you can even make your own. This adds more individuality
to your forum which can set it apart from the thousands of other InvisionFree or Proboards forums out there.
Building your own forum with phpBB allows for the most customization, however, and you can implement
a lot more in-game features with phpBB boards such as character profiles with experience meters and word
counters that automatically update a player’s stats based on how many words they have written.

How “RPG-like” you decide to make your PbPRPG can vary considerably. Some game developers prefer
creating complex systems for stuff like stats, combat, and leveling up. Other developers prefer making their
PbPRPG much more centered on creative writing. Rather than having stats, you simply find other members
of the site and write to them within a few standardized limitations such as “no god-moding, “no killing site
NPCs,” and “no auto-hitting.” Be sure that you create a rules page that clearly lays out all in-game and out of
character rules each player has to follow. This will help prevent disagreements among players, especially if
they are battling which can get very complicated because neither side wants to lose.

When you are working on the RPG, it is a good idea to create everything live right on the site. Some
webmasters would advocate working on your site offline and then publishing the whole thing in its entirety
once it is completed. This is a mistake because it wastes valuable time. One of the advantages of working
lively on your website is that you can continually test to see how things look after adding them. This makes
it easier to tweak small details as you go along. Another advantage is that your site is “out there” longer for
people and search engine crawlers to find. The longer your site has been around, the more credibility it will
have in the eyes of both potential members and potential advertisers down the road. Plus, who knows, maybe
someone will stumble across your site as you are working on it, think it looks cool, and bookmark it.
There’s a potential member right there!

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

7

Figure 2. A standard set of equipment for a Dragon Ball Z RPG

Just a few of the standard features that most RPGs have, are items, locations, and character stats. When it
comes to items, make sure you add multiple pathways of items so that players can feel a sense of character
customization through what they buy and equip. You should also consider the length of time it will take to
purchase an item based on how easy it is to earn whatever money system you implemented. There should
be at least three tiers of equipment: starting equipment that beginners can buy and use right away, top-tier
equipment that people will ultimately save up for and is very strong, and then at least one tier in between
these two that can serve as an intermediary. Once players start to attain the best stuff, you can release a
patch that adds even better stuff. The more tiers of equipment you add, the better because it is always good
to make sure that everybody has something to keep striving for. Item balance is something that you should
spend a good amount of time on because it is one thing you need to get right from the get-go. Unlike other
stuff which can be tweaked as the game goes on, changing items after people already have them can throw
the whole RPG into disarray. It’s not fair to “nerf” an item after players have already obtained it just because
you think it is way too strong (though sometimes an item can be so game breaking you have no other
choice). Imagine someone who spent months saving up for a god-tier item only to have that item nerfed after
purchasing it. They will probably quit. That’s one member lost because you didn’t spend enough time on
item balance.

The locations are the second standard feature among most RPGs. What type of locations you use will depend
on what theme you settled on at the beginning of your development process. For example, if you are creating
a fantasy RPG your universe will probably consist of cities spread across a continent. If you’re making a
science fiction, RPG on the other hand, your locations could be different planets spread across an entire
galaxy. Locations should be diverse enough to encourage travel between them, but not too numerous so as to
isolate the player base from each other. How many locations you add to the RPG will be dependent on how
many players you have. A good rule of thumb is to create a universe where there will be a minimum of at
least three active characters at each location at any given time. Why three? Because the average roleplaying

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

8

thread consists of about three people. Players in a PbPRPG want to interact with each others. The entire
point behind the game is to roleplay with other people so make sure your universe isn’t too vast.

The third standard feature is the player stats. Stats are typically categorized as either attack or defense.
Some examples of attack stats include accuracy (for projectile weapons), strength (for melee weapons),
and intelligence (for magic). Examples of defensive stats are toughness, vitality, stamina, and spirit (magic
defense). Other commonly used stats are hit points, mana, speed, dexterity, charisma, determination, etc.

You can look to existing RPGs for some inspiration on stat categories that will fit with your RPG’s theme.

When it comes to play-by-post RPGs, the focus should be on roleplaying so creating a combat system that
incorporates player stats can be quite tricky. I would recommend avoiding a system that is purely math based
since it will simply be too difficult to keep balanced in the long run. Formula based combat systems take
months and months of testing to ensure nothing can be easily abused and that is just not what you want to
be concentrating on when developing a PbPRPG. Not to mention that unless you can create a program to
calculate damage, a math based combat system will scare off some potential players that don’t want to sit
there keeping track of numbers, calculating battle damage, and learning complicated formulas. Keep creative
writing at the center of your battle system and instead use player stats merely as a guideline for what will be
deemed acceptable versus what won’t be. For example, it is believable that a character with a higher strength
stat could throw his opponent through a table, but it wouldn’t make sense for a character with a lower speed
stat than his opponent to be dodging every attack. When you create your battle system, add battle referees
to the mix. A battle referee is simply an impartial third member that vows to read every post about the battle
and make rulings when the two participants have a disagreement or when he or she sees something they
think violates the plausibility set forth by the statistical guidelines of each character.

Play-by-post RPGs are just as legitimate as big name video games and can often be much more fun. Play-
by-post RPGs have been known to keep people occupied for years and have the added side effect of making
people better writers in real life. Whatever other games do,s PbPRPGs are not dead. They are still alive and
well. If you’re a fan of roleplaying games, give PbPRPGs a try by becoming a member or perhaps even
creating one of your own.

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

9

User Actions Around MVW – Part 1
by Damian Czernous

Composing a user interface is a quite challenging task due to the multitude interactions to
handle. A user action involves one-to-many UI components such as buttons, text fields, etc.,
which makes things more complicated. For that reason, the MVW strategies exist. To a large
extent, they focus on M, MV, C, P and V relationship devoting less attention to handling user
actions. Thus, let’s entirely focus on them and see how they fit the MVW mechanisms.

A group of Model View Whatever (MVW) design patterns shapes the relationship between data and its
presentation. The business case of these structures is to deliver bespoke information (that is the M) to the
custom-made view on a user request. From the engineering point of view, the MVW is thought-out and a
proven structure that simplifies following the idea of Separation of Concerns (SoC) respectively to the
application needs. The MVC, MVP and MVVM design patterns differentiate in understanding of the user
interaction and data access.

All begins with the Smalltalk MVC (e.g. Described in a great dissertation of Pattern-Oriented Software
Architecture – A System of Patterns page 125-143). The father of the later varieties, such as Document-View
(used i.e. by Microsoft), Visual Works MVC, MVC Model-1 and MVC Model-2 gave birth to the MVP design
pattern described by Mike Potel (Taligent IBM).

The original understanding of the MVC’s view and controller was reengineered when applied to the modern
GUI frameworks in 90s and guys from Visual Works did a lot on that way. Therefore, the next generation
pattern (MVP) replaces it with a greater focus on a user and an application relationship such as events and
flexible model presentation. Without going into the details, this is a reason why the MVP is often seen as a
generalised form of the MVC.

Finally, Martin Fowler focused on the consequences of the mechanisms shipped with the MVC and MVP in
his GUI Architectures work. These days, designing a UI is about working with them. Separated Presentation,
Flow Synchronization, Observer Synchronization, Supervising Controller, Passive View, Application Model
and Presentation Model are the tools in developer’s hand.

In my opinion, the MV of the MVW highlights a great achievement of the Smalltalk MVC, which is the
domain and the presentation separation. Sometimes, the authors of other publications value separation of the
business and the view logic most. Each of MVW patterns has own flaws and most of them concern exactly
these two – the business and the view logic. However, constructions around domain evoke less emotions.
Perhaps, engineers see them more universal as I do. The whatever (W) part stands for doesn’t really matter
rather than concrete C, P or VM.

The W originally stands for “whatever works for you”, which used in the context of UI framework such as
AngularJS implies that the framework is ready for all UI strategies and it’s up to the coder which to use.
However, I imply something different. From the solution point of view it doesn’t really matter whether you go
with MVC, MVP or MVVM (or any derivatives), because the mechanisms that work behind the seen are the
true value of each. The trick is to understand them well and know which to use and when. So, mechanisms that
crete them are far more important. It’s also easier to understand them separately then a whole pattern at once.

The typical UI responds to many user actions. So, what is the type of thinking that would be helpful to get the
job right? It turns out, that ensuring source, either by following SOLID principles or thinking about the effects
that can be a good way to move forward. In general, the trick is to handle actions while staying compliant with
the MVW.

Let’s ponder the reasoning about the effects and SOLID principles. Let’s try to formulate some rules for
creating actions. As a code base, let’s use the Bakery application – a training and a third-party free project:
pure Java (Mockito for testing), Vaadin (without add-ons) plus Hibernate. In order to run it, please follow the
following steps:

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

10

• 	 Clone sources: git clone https://bitbucket.org/sanecoders/bakery.git

• 	 Navigate to bakery folder

• 	 Execute maven command: mvn package jetty:run

• 	 Navigate to: http://localhost:8080

Handle one Task Within an Action Method
This is a straightforward translation of the Single Responsibility Principle and OpenClosed Principle
adjusted to the action’s nature.

Scenario 1
The bakery application uses a product manager that doesn’t only have a product save action, but a save and
back action as well, which redirects user to the previous page. This is because, the bakery owner expects to
list products and modify them on demand. So, a pretty natural expectation is to navigate back after finishing
editing and see the updated product list. From the user perspective, saving and returning back is one action.
Usually, this is an unspoken expectation that we – engineers – should be aware of. It’d be against human
nature asking users to navigate manually back after the invoked save action. The fundamental utilization
of OOP (Object Oriented Programming) paradigm is to reflect the existing relationship of the world. The
bakery owner, while working with the list of the bakery products, treats save and back editor’s action as a
single click; as finishing editing – we say “Yes, of course, save my changes and let’s go back to the list”.
This is the use case to design.

At the beginning we need to model proper application context by defining right package. Then, create action
class: com.sanecoders.bakery.product.edit.view.ProductSaveAndBackAction.

The SRP won’t be violated since only one actor will be interested in this action. Sometimes, it helps to
replace in mind “SaveAndBack” with e.g. “EditorFinish” to hear ProductEditorFinishAction. However, this
is just an exercise to get the proper understanding of the situation. Such name would be less descriptive and
since we already understood the context, it’s expected to move on and learn what the action is about?

Keynote

It’s a good practice to begin studying classes by reading their package names. A package gives the functional
context in which interesting class operates. For that reason, it’s so essential to name them well.

Scenario 2
There is another unspoken user expectation that we need to address correctly. Every functionality we build
has to be extendible, since reusing working solutions already lies in the human nature. Thus, one day, bakery
manager may ask for editing products in a pop-up window, which simply makes redirecting back too much.
It’d be quite unfair to spend time on modifying something we had to accomplish in steps earlier. Each
step is a task to be done. One is to save product (ProductSaveAction) while the second is to navigate back
(ProductSaveAndBackAction). The second is a simple extension of the first one. This is how a user sees this
and so should we. We may have two implementations.

First, Mike Potel doesn’t say how to handle the view logic from the action. He just focuses on the business part.

public class ProductSaveAction implements Button.ClickListener
{
 public ProductSaveAction(ProductEditPresenter productEditPresenter) { ... }

 @Override

https://bitbucket.org/sanecoders/bakery.git
http://localhost:8080

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

11

 public void buttonClick(Button.ClickEvent event)
 {
 productEditPresenter.save(); // Potel’s delegation
 }
}

public class ProductSaveAndBackAction extends ProductSaveAction
{
 @Override
 public void buttonClick(Button.ClickEvent event)
 {
 super.buttonClick(event);

 // Potel doesn’t say where/how to handle UI code
 event.getButton().getUI().getPage().getJavaScript().execute(JAVASCRIPT_GO_BACK);
 }
}

Second, however Supervising Controller (the mechanism named by Martin Fowler but described by Andy
Bower and Blair McGlashan), version does care about the view logic (ProductEditPresenter).

public class ProductSaveAndBackAction implements Button.ClickListener
{
 @Override
 public void buttonClick(Button.ClickEvent event)
 {
 productEditPresenter.saveAndGoBack(); // Bower and McGlashan’s delegation
 }
}

public class ProductEditPresenter
{
 public void save() { ... }

 public void saveAndGoBack()
 {
 save();
 productEditDisplay.goBack(); // controller supervises view
 }
}

The trick is to understand that we have one user action and two tasks (two software actions) that come from
spoken and unspoken user expectations. Depending on the chosen strategy, we may see them as two action
classes or two controller methods.

But, sometimes we’re in a hurry and for much more complex situations, we may have no time to brainstorm.
This is why SOLID principles are so helpful. The OpenClosed Principle requires us to write code that is
open for extension, but closed for modification. Saving and navigating back can’t be done within only one
method, because according to the rule, it’s forbidden to modify the saving functionality with unrelated code.

Keynote

People build things (e.g. Buildings) by extension (e.g. They build second floor on the top of the first one).
Building a software is not any different. This is why a software has to be always expansible. This is an
unspoken client expectation – one of the most anticipated, yet often violated and unaccepted when exposed
to the customer.

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

12

Scenario 3
After finishing the editing, the product manager navigates back, thereby happy bakery owner may see an
updated product list. The expectation is to update the list during navigation. We know already, it has to be
done in steps. Updating product list should take place before or after the navigation. Switching pages is a
task itself and typical web UI framework will do it for us.

public class GotoProductListAction implements ViewChangeListener
{
 @Override
 public boolean beforeViewChange(ViewChangeEvent viewChangeEvent)
 {
 return true;
 }

 @Override
 public void afterViewChange(ViewChangeEvent viewChangeEvent)
 {
 if(ProductView.LIST.getName().equals(viewChangeEvent.getViewName()))
 {
 productListPresenter.show();
 }
 }
}

In the future, we may use a – before method – e.g. to grant access to the product manager only of the bakery
staff. Granting access and refreshing page won’t violate the SRP since there is one actor (bakery owner) who
is interested in the product manager and zero actors interested in its partial use. On the other hand, it would
violate the principle, if both, customer and bakery staff can access the product list, but not to edit. Then, we
have two actions. One is for refreshing and the other is for granting access e.g. GotoProductListAction and
AuthorisationController.

Depending on the chosen technology of authorization, the implementation may differ e.g. Java Web and EJB
container ship with internal security mechanism. This container managed solution that won’t fit all Java web
UI frameworks such as Vaadin views – here App Foundation plug-in might help.

This is a true user friendly rule that focuses entirely on the action itself. To conclude with one task per
an action method, we have to think like a user and catch his spoken and unspoken expectations. We also
have realized that often small steps can be grouped and seen as a whole (product saving and going back,
navigating to and refreshing the product list). Nevertheless, these steps are important from the SoC point of
view and SO of the SOLID tools that draw our attention to them.

Follow Encapsulation
The best bakery owner tracks sells to determine the optimal supply of flour among other things. He holds a
pen and a piece of paper on the counter to easily take notes of each sale. One day, bakery owner asked for a
software that would do the job for him, so he can spend more time with his family.

The prediction of the flour size represents the human need. Tracking sells and doing calculations are middle
activities. Therefore, the requested functionality can be broken down into two modules. First, tracking sales
and the second, for calculations. Let’s go with the first one.

In order to take a single note of sale, a human being has to mark a sold product on the product list. At the
beginning, the human brain asks the body to move a hand. That is a gesture. Finally, a pen passes ink on the
paper drawing some shapes. The software business logic represents the human need, which is to remember, the
sale. The gesture is a software action. The view logic represents the shape of the mark. The hand is a keyboard
or a mouse button and the pen is a display.

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

13

This is a good example of the Supervising Controller. The controller (the human brain) administrates the
realization, of both the business and the view logic.

public class MarkProductAction implements HandHoldingPen.HandTickGesture
{
 private final ShopAssistant shopAssistant;

 public MarkProductAction(ShopAssistant shopAssistant)
 {
 this.shopAssistant = shopAssistant;
 }

 public void tickGesture(HandHoldingPen.Tick tick)
 {
 shopAssistant.markProduct(tick.getId());
 }
}

public class ShopAssistant
{
 private final SaleMemory saleMemory;
 private final Pen pen;

 public ShopAssistant(SaleMemory saleMemory, Pen pen)
 {
 this.saleMemory = saleMemory;
 this.pen = pen;
 }

 public void markProduct(ProductId id)
 {
 pen.drawMark(id);
 saleMemory.rememberSale(id);
 }
}

From the previous examples, we know that sometimes the view logic may stay apart from the controller’s
care. This may happen e.g. when the bakery owner uses the cash register. The difference is that human being
doesn’t have to know how to draw a mark anymore. The cash register knows that for him.

public class MarkProductAction implements HandHoldingCashRegister.HandTouchGesture
{
 public MarkProductAction(ShopAssistant shopAssistant, CashRegister cashRegister) { ... }

 public void touchGesture(HandHoldingCashRegister.Touch touch)
 {
 cashRegister.printSale(touch.getId()) // delegates view logic
 shopAssistant.rememberSales(); // delegates business logic
 }
}

public class ShopAssistant
{
 public ShopAssistant(SaleMemory saleMemory, CashRegister cashRegister) { ... }

 public void rememberSales()
 {
 saleMemory.updateSales(cashRegister.getPrintedSaleIds());
 }

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

14

}

public class CashRegister
{
 public CashRegister(Pen pen) { ... }

 public void printSale(ProductId id)
 {
 pen.drawMark(id);
 }
}

In both versions we expect actions neither to do the business, nor the view work. However, we do expect
them to connect triggering component – a hand or some button from a common UI – with the business and
the view logic.

A human being knows how to hold a pen in a hand. This explains, why actions are UI framework oriented.
The human brain will oversee the hand holding the pen in a different way, then the hand holding the cash
register because of their assorted natures. In other words, gestures (actions) depend on their subjects.

Let’s go back to the Bakery application, The ProductSaveAndBackAction follows the Supervising Controller
strategy (HandHoldingPen equivalent) while ProductsStartStopEditingAction takes Mike Potel’s way
(HandHoldingCashRegister equivalent).

Additionally, the part of the navigation (going back) is quite an interesting one. It belongs neither to the product
edit view logic nor the product save and go back action logic. However, it does belong to the UI framework
(to the human body – eyes). This is how I explain myself, why action may hold a reference to its caller. After
all, both, edit view and its actions are UI framework oriented, both can be seen as one presentation component.
Based on that, either the view or action may handle navigation, if Potel’s solution preferred.

public class MarkProductAction implements HandHoldingCashRegister.HandTouchGesture
{
 public void touchGesture(HandHoldingCashRegister.Touch touch)
 {
 touch.getHand().getHuman().getEyes().goBackToClient();
 }
}

With this occasion, it’s worth to mention the Passive View, where the whole view logic is done by a business
unit (Controller or Presenter). The difference with the Supervising Controller is that such controller just
administrates the view logic.

Now, how this all refers to the encapsulation? Well, the shop assistant’s brain is both the business and the
view logic unit (logic, not entity). It knows how to store single sale in the brain’s memory and draw a mark.
A source code represents that truth. The business unit associates with storage (brain’s memory – entity)
and the view (pen – entity). The business and the view units (objects) are responsible for processing its
algorithms (brain’s way of thinking – logic). We may change the way of thinking only through the brain and
that is the example of the encapsulation. Thereby, we encapsulate all necessary internals within classes and
change them through its API. If we see action as a gesture, then following encapsulation means to call API of
the right logic unit that encapsulates the right algorithm (but not to do the job by itself).

Treat Action as a Customization
This rule additionally underlines the unspoken user expectation that we have described earlier. A software
has to be always extensible.

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

15

One day, the bakery owner may change his mind and ask to edit the product in the pop-up window
rather than on a separate page. The natural way of providing requested change is to reuse editor module
attached to the new save and close pop-up action. If previously designed save and navigate back action
works as an extension, so it’s only about replacing action in the Main Pattern (e.g. In editor’s builder
ProductManagerBuilder).

public class ProductManagerBuilder
{
 void buildProductEditor()
 {
 buildProductEdit();
 buildProductSaveAction();
 }

 void buildProductSaveAction()
 {
 LangButton saveComponent = productEditViewFactory.createSaveButton();
 saveComponent.get().addClickListener(productEditViewFactory.
createProductSaveAndBackAction(productEditPresenter));
 productEditView.setSaveComponent(saveComponent);
 }
}

Otherwise, the modification of the editor’s source code will be necessary, which will disappoint the customer
and violate Open Closed Principle.

Keynote

A software is extensible when properly mirrors world’s relationships. The SOLID principles are technical
translations and generalizations of the observed patterns. Among other tools, they help us to mirror these
complexities without thinking about them.

Summary
Software actions physically represent user gestures. Their responsibility is to connect the user intention with
implementation. Such understanding results not only with the better functional encapsulation, but also with increased
readability. The readability of the source code is the most decisive engineering factor of the project success.

Separating business, view and action logic helps to adjust (re-factor) source code structures respectively
to the current needs. It’s quicker to invert dependencies and move functionalities between modules to get
a modular solution where all parts are separately deployable. It’s also easier due to the automatic nature of
the work. The complexity of the structures or chosen strategy (e.g. Described by Martin Fowler) depends
upon functional and non functional requirements (not covered in this article). In order to play with these
structures, the source code has to be written in a modular and self explanatory way and it needs to follow the
SOLID principles. This will also be the main subject of part 2 – “associations” of this article.

On the Web
GUI Architecture by Martin Fowler http://martinfowler.com/eaaDev/uiArchs.html

About the Author
Damian Czernous is a software engineering coach at Nokia Networks, who wants to share his knowledge
with others. He is passionate about reasoning in engineering. This is an example of his work. Feel free to
comment on it!

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

16

User Actions Around MVW – Part 2
Associations
by Damian Czernous

From my observations, the way we handle user actions influences the modularity of the
UI most, Why? In a single MVW module, we usually have several user actions that tightly
or loosely couple code. The view sets UI components and may handle UI logic. The UI
business unit handles the UI business logic. But, it’s the user action that holds the key to both
“worlds”. Multiplying that fact by the number of actions in a single module gives a clue
about the potential mess. What’s more, action’s execution flow is more challenging to track,
because it has tendency to be transparent; usually it’s triggered by UI and occasionally by
our code. Thus, the way we control action associations controls “the mess”.

Last time, we spoke about handling user actions in MVW oriented applications (“User actions around MVW,
part 1”). We have formulated simple rules based on spoken and unspoken user expectations and we’ve
tried them out by the following several strategies known from the MVW. In a result, we identified what are
action’s, business’s, and view’s logic obligation. Finally, we’ve proved the discussed concepts with a source
code. This time, we’re going to think about action associations rather than internal organization, think about
the consequences of the communication. As before, we’ll use Bakery application (Java with Mockito, Vaadin
plus Hibernate) to exercise our thinking. In order to run it, follow the steps:

• 	 clone sources: git clone https://bitbucket.org/sanecoders/bakery.git

• 	 navigate to bakery folder

• 	 execute maven command: mvn package jetty:run

• 	 navigate to: http://localhost:8080

The Bakery application consists of several functionalities. A product manager allows to list, add and edit
products. User management features support signing in, out, and switching between available languages.
All these functionalities can be deployed independently and the decision about their usage comes from the
Main Pattern. In other words, it’s possible to compose another Bakery application, e.g. Bakery Quick View
that will provide a product overview (no modify option) displayed in a few languages (no authentication and
authorization) just by delivering another Main Pattern.

This is a good example of the modular application that allows reusing existing functionalities (modules)
without modifying them. Modules that are ready for re-use, satisfy the unspoken client expectation, which is
“Of course, once completed, I would like to use my features freely”. For the web applications, handling user
actions has a significant impact on such result. Often, they communicate through available functionalities,
e.g. by letting the editor (module) to display or add a product form from the list (module).

In practice, action implementation may simply delegate display request to the editor module e.g.

package com.sanecoders.bakery.product.list.ui;
public class ProductAddAction ...
{
 private final ProductEditorPresenter productEditorPresenter;
 public ProductAddAction(ProductEditorPresenter productEditor)
 {
 this.productEditorPresenter = productEditorPresenter;
 }
 @Override

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

17

 public void buttonClick(Button.ClickEvent event)
 {
 productEditorPresenter.onAdd();
 getNavigator(event).navigateTo(“productEditorPage”);
 }
}
package com.sanecoders.bakery.product.edit;
public class ProductEditPresenter
{
 public void onAdd()
 {
 showEmpty();
 }
}

The method buttonClick() works in the context of the ProductAddAction class, thus the method name,
from the functional point of view can be understood as onAddProductRequest(). Using UI frameworks, we
implement generalized interfaces, therefore the only place where we learn about that context is the class
name. This should be a good motivator for proper naming and maintaining class names for the time being.

On the add product request, proposed action asks editor’s presenter to prepare editor’s view by filling a form
with empty data. Finally, it redirects to the productEditorPage making the prepared form to be visible to the user.

A drawback of this solution is the tight coupling of the list and edit modules. The action holds a direct
reference to the edit module (presenter class) being a part of the list module (notice packages). A better
solution would maintain modules independency (between ProductAddAction and ProductEditPresenter) and
keep, at the same time, the existing flow of control.

package com.sanecoders.bakery.product.list.view;
public class ProductAddAction ...
{
 @Override
 public void buttonClick(Button.ClickEvent event)
 {
 productEditorInteractor.onAdd();
 getNavigator(event).navigateTo(ProductManagerPages.EDIT.getName());
 }
}

package com.sanecoders.bakery.product;
public interface ProductEditorInteractor
{
 void onAdd();
}
package com.sanecoders.bakery.product.ui;
public enum ProductManagerPages
{
 EDIT(“product.edit.productEditPage”);
}
package com.sanecoders.bakery.product.edit;
public class ProductEditPresenter implements ProductEditorInteractor
{
 @Override
 public void onAdd() { ... }
}

After changes, both the list and edit modules, in order to communicate, need to satisfy the contract of the
product manager (ProductEditorInteractor and ProductManagerPages).

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

18

Application modules are little pieces that become meaningful when used within some context. In this case,
little modules compose a product manager module that composes, along with the user module, the Bakery
application. In other words, product list end edit need to satisfy the contract of the platform they are part of.
For that reason, above the interface and Enum class reside in product and “product. ui” packages and are
called the API of the product manager. This is a frequent situation when we write a client application for a
back-end system, e.g. in order to run a game on Facebook, the game itself needs to satisfy Facebook API.

Figure 1. Inverting dependencies between List and Edit with Product Manager

Keynote

The package, class and public method names build sentences from which we can learn the application.
For the engineer, having the naming skills on the right level helps to create self-describing source code
and simplifies following DDD practice. By introducing an interface, we invert dependencies and keep the
original flow of control. Combining naming and inverting dependency practice, we’re in a far better position
to design a well organized higher level API. Application features represent spoken user expectations.
They’re the reason why we build applications. While coding, we (engineers) also need to remember about
the unspoken expectations such as reusability and extensibility. That means, asking questions for the less
obvious situations.

For the client or company we work for, it might be important to provide several user interfaces or be able to
replace current one. In such cases, UI related part should live independently. Therefore, every UI oriented
module may consist of UI business and UI view modules. With technique described above, we can easily
approach this need. The problem happens, when we ask questions and our client isn’t sure or after a while
he changes his mind. The funny thing is, that the variability of the human nature is the inherent part of this
world, thus we need to take care of it as well. For that reason, I prefer saying, that the application has to
be always ready for extension. I am strongly convinced that we should ensure extensibility of the entire
solution. The Bakery application is extensible, but currently it doesn’t support separate deployment of the UI
part within each module. However, it’s easy to make that change by extracting a few interfaces (no algorithm
changes or longer refactoring is required). It’s actually very automatic work and most IDEs have supporting
refactoring tools.

package com.sanecoders.bakery.product.edit.ui;
public class ProductEditView
{
 private final ProductFieldGroup productFieldGroup;
 public ProductEditView(ProductFieldGroup productFieldGroup)
 {

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

19

 this.productFieldGroup = productFieldGroup;
 }
}
package com.sanecoders.bakery.product.edit.ui
public class ProductSaveAndBackAction
{
 private final ProductEditPresenter productEditPresenter;
 public ProductSaveAndBackAction(ProductEditPresenter productEditPresenter)
 {
 this.productEditPresenter = productEditPresenter;
 }
}
package com.sanecoders.bakery.product.edit;
public class ProductEditPresenter
{
 private final ProductEditDisplay productEditDisplay;
 private final ProductService productService;
 public ProductEditPresenter(...)
 {
 this.productService = productService;
 this.productEditDisplay = productEditDisplay;
 }
}

The edit module follows Andy Bower and Blair McGlashan MVP design pattern. The view (ProductEditView) has
no direct reference to the business logic that is represented by ProductEditPresenter class. All view and business
oriented components are separated by package (edit and edit.ui). This makes eventual UI module creation
simpler. Only action (ProductSaveAndBackAction) holds the direct reference to the presenter, but as mentioned
before, it’s just about extracting the presenter interface. This interface will be part of the module’s API.

package com.sanecoders.bakery.product.edit.ui
public class ProductSaveAndBackAction
{
 private final ProductEditPresenter productEditPresenter;
 ...
}

package com.sanecoders.bakery.product.edit;
public interface ProductEditPresenter { … }
public class ProductEditPresenterImpl implements ProductEditPresenter { … }

When a solution needs to support exchangeability of the UI part, it sounds reasonable to use the Supervising
Controller mechanism (described by Martin Fowler in GUI Architectures work), which makes UI implementation
more intuitive (find examples in “Follow encapsulation” chapter of the previous article for reference).

Action as a Part of Another Class
A typical situation happens when we expect a view or a business class (depending on the chosen strategy) to
be small enough and to support one action of a kind. Have a look on the login view class.

public class LoginView implements Button.ClickListener
{
 private LangTextField emailField;
 private LangPasswordField passwordField;
 private LangButton signInButton;
 @Override
 public void buttonClick(Button.ClickEvent event)
 {
 try

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

20

 {
 signIn(event);
 }
 catch(LoginModel.UserValidationException e)
 {
 notifyFailedAttemptToSignIn(event);
 }
 }

 private void signIn(Button.ClickEvent event) throws LoginModel.UserValidationException
 {
 loginModel.validateUser();
 event.getButton().getUI().getSession().setAttribute(BakerySession.USER.name(),
loginModel.getUserId());
 event.getButton().getUI().getPage().getJavaScript().execute(JAVASCRIPT_GO_BACK);
 }
 ...
}

The LoginView class is considered the sign in the form and the sing in operation. The key thing is to be aware
of that, and implement these aspects independently; like two separate classes combined into the one – they
share common space, but not states. Therefore, buttonClick() method should not relay on the view states, but
only on those that apply to the action itself.

In our example, the signIn() method doesn’t use class singInButton field directly, but accesses it by making
a call to Button.ClickEvent.getButton() method using action’s API. This is because, the signInButton field
composes view’s login form – belongs to the view class.

From the architectural point of view, such practice allows to extract the action code to the separate class
when needed. This kind of thinking guarantees loose coupling between roles, even if they’re coded within
the same class.

For many, this kind of thinking is the reason for such code simplification. For me, it’s a nice side effect of
the thinking about responsibilities under favorable circumstances. When I expect a class to be very simple
(favorable circumstances), I can merge implementations that support a wish of the same application actor,
e.g. in order to sign into the Bakery application, the user wants both access sign in form and to proceed
with the sign in operation. This is a good example of the design shortcut that we may benefit from. For such
practice, it’s essential to have application actors neither interested in the view nor the action independently,
since that would violate the Single Responsibility Principle (SRP).

Summary
The Mike Potel or Andy Bower and Blair McGlashan way of handling actions are two available options
to choose from. To gain deployment independence between application functionalities or UI code, we may
use the Invert Dependency technique with each. Actions respond to the user gestures captured by the view
components such as buttons. Actions are also UI framework oriented. It makes a lot of sense to keep them
close to the UI parts such as views. This makes the code organization more readable and intuitive.

Action associations should point towards business and (or) view code units, but not vice versa. The best place
to connect actions to their triggering components is the Main Pattern.

About the Author
Damian Czernous is a software engineering coach at Nokia Networks, who wants to share his knowledge
with others. He is passionate about reasoning in engineering. This is an example of his work. Feel free to
comment on it!

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

21

CMS-Based Web Application
Maintenance Made Easy with Integrated
OO Design
by Jean-Pierre Norguet

Build your web application upon a CMS and use OO to get 3 advantages:

1. Speed: immediate prototyping and development support

2. Reliability: fast, readable, and consistent bug fixing

3. Adaptability: flexible change request implementation

Nowadays Content Management Systems (CMS) with rich set of features allow fast
prototyping, extended reuse, and accelerated development of full- featured web
applications. However, each CMS comes with its own framework, library, and database
schema, therefore limiting code readability and portability. Integrating your web
application with a CMS can clutter your code readability with non-trivial CMS-specific
statements, which makes maintenance difficult. With the approach that we propose, layered
OO design and persistence integration with the CMS and the database make the code
simple and readable. In this article, we study a simple design and implementation of this
approach, from high-level overview to detailed pieces of code. The code implements a
typical “course session display” web application and is run in Wordpress, a popular rich-
featured CMS based on PHP and MySQL.

Most CMS like Wordpress, Drupal, or SPIP use an architecture based on three parts (Figure 1):

1. A framework that organizes user calls into structured requests;

2. A set of standard screens that handle typical document display and is extensible to any kind of business
request management;

3. An extensive programming library to manipulate the CMS database elements.

Figure 1. Typical CMS Architecture (CMS code in blue, custom code in orange)

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

22

From left to right, the users of the web application – or the visitors of the web site or blog – send HTTP
requests from their browsers through the Internet to the host web server. The web server is configured to pass
the request to the CMS framework, which structures the request and passes it to the presentation screens,
whether they are standard screens displaying the CMS information content or custom business screens doing
something useful. Screens are typically mixed PHP-and-HTML pages that query the CMS database, retrieve
the content, and display it the desired way. The CMS database is formatted to store
CMS-specific content like posts/pages, users, comments, and various other data that can be managed by
third-party extensions – most of the time named “plugins”.

This is true for most web-enabled CMS that can be found today on the Internet. For the simplicity of the
reading, we will focus on the Wordpress CMS. In Wordpress, the middle part that handles document display
and allows for business extension is called theme. The Internet is full of free and non-free Wordpress themes
that offer extremely various ways of displaying the same information. Prototyping a website or blog based
on theme selection is extremely fast. Also, separating presentation (in the theme) from content (in the CMS
database) allows website look-and-feel change at any time without any modification. If you are unfamiliar
with Wordpress, the relevant elements of the Wordpress framework, API, and database schema will be
discussed in time in the following.

The typical process for website prototyping based on Wordpress comprises the following steps:

1. domain name reservation through a registrar, or reuse of a subdomain

2. web host reservation supporting PHP and MySQL

3. Internet download of Wordpress files and upload to host

4. creating a Wordpress-dedicated MySQL database

5. configuration and installation of Wordpress, which creates the database schema with some basic content

6. choice of the standard theme that comes with Wordpress or an existing theme downloaded from the
Internet

7. configuring the display and create or import some content

8. tailor and extend the Wordpress theme according to business needs

In the following, we assume that you are familiar – or can become so, as Wordpress installation is extremely
easy – with the first steps of the process. We focus on the last point: extending Wordpress to the business
needs. We assume these needs cannot be met or satisfyingly met with the use of plugins, especially when
application complexity is growing over time. Striving for simplicity, we leave out the addition of powerful
and complex frameworks like Zend or Symphony, although large projects may benefit of their use.

Sample Example
Let us consider a simple example that will illustrate our approach. We are in charge of a national art academy
in which teachers located all over the country give similar courses. We need to display the sessions per
course or per teacher so the students can choose the sessions that suit them best: close to their place and at
available time. Teachers need a web interface to encode their course sessions. Administrative staff encodes
the course descriptions and manage access to the application.

Example Features: Use Cases
A basic use case diagram for this applications is as follows (Figure 2):

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

23

Figure 2. Use case diagram of our sample application

The diagram shows the three kinds of actors: student, teacher, and staff. Teachers need a login to realize
their session-encoding use cases. So do the administrative staff members, with a different clearance level, to
encode the course sessions and manage access to the application, that is providing login and passwords to the
teachers and incoming staff members. The academy being open to the general public, students need no login
to search, display, and browse course sessions. The students need for a login might change if the system
would implement an online session reservation system, but let us keep it simple for the example.

System Model: Object Classes
In the direct line of standard OO development processes, let us model the system objects. The UML class
diagram is designed as follows (Figure 3):

Figure 3. UML class diagram of our sample application

• 	 The Person (or User) class models the actors proxies: teachers and staff members, with an attribute that
defines their role. Students might be modeled as well if the application would keep the record of each
student for reference. To keep it simple, we assume the student database is located elsewhere, for example
in standalone Excel files. Teachers and staff members have a login and password to access the application.
Their name is of course stored, as well as an e-mail address and a phone number to contact them.

• 	 The Session class models the heart of the system information: the available sessions that teachers offer to
the students. We assume the teachers give only courses defined in an existing set the academy has chosen
to offer. Each session starts and ends at some date and time, the teachers need to specify. The address is
also chosen by the teacher, as well as the price, which we assume to be included in a reasonable range
arranged between the academy and the teacher.

• 	 Finally, the Course class models the available courses in the academy. Teachers willing to work with the
academy must provide sessions for the defined set of courses, with the necessary skills and diplomas.
Course descriptions are set by the academy board, and encoded by the administrative staff. Teachers
cannot change them, although they can give their courses the way they want. Each course has a title,
and a mnemonic code for reference.

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

24

Database Mapping
In a web application that would not be CMS-based, the class diagram would map to corresponding database
tables, to be created. As we integrate with the Wordpress CMS, we can reuse CMS database tables and features,
including login/password security management and visual course description editor. In our sample application,
the class diagram could be mapped to the CMS database schema like this (Figure 4):

Figure 4. UML to DB mapping (reused CMS elements in blue)

The following Wordpress elements – and the corresponding features – can be reused as follows (note that the
default Wordpress table names start with the wp_ prefix):

• 	 Security management: the login and password fields of the Person class can be mapped to the user_login and
user_pass fields of the wp_users Wordpress table. Reusing these two fields gives more than just some table
and field reuse: the Wordpress login feature uses them and the security access becomes automated by the
Wordpress system, without requiring any custom security code to be written.

• 	 Custom code: the Session class is a newsystem element that the CMS does not model as is. We need to
create the database table and all the needed fields. However, we can link secondary keys to the primary
keys (ID fields) of the wp_users and wp_posts tables, which seals the integration of the custom code.

• 	 Visual editor: the mnemonic code, title, and description of the course can be mapped to the post_name,
post_title, and post_content fields of the wp_posts Wordpress table. This allows the update of these fields
by the built-in Wordpress visual editor, with all the word-processing-like composition features needed by
the non-technical administrative staff (Figure 5).

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

25

Figure 5. Encoding course description in Wordpress

This interface is convenient in many ways. First of all, it needs no custom code to be written: the
administrative staff connects to the Wordpress system and receives immediate access to the post
management menu (see it expanded on the left). In our mapping, we have defined that each post corresponds
to a course given in the academy. Post editing becomes a handy way to course editing for the staff. The
visual editor interface shows a field to write the course title. Right under it appears the permalink, with a
small field to complete the post_name, which corresponds to the course mnemonic code. Finally, the text
area allows the staff to edit the course description, with the composition toolbar, image insertion facility, as
well as HTML edition panel for the technical savvy.

As an exercise here, you can open the Wordpress interface and create a few posts describing academy
courses, along with some user access for a teacher and an administrative staff member. Another exercise
could be to create the custom Session database table and populate it with two or three rows. Here are some
table creation and row insertion statements:

CREATE TABLE SESSION (ID BIGINT(20), TEACHER_ID BIGINT(20), COURSE_ID BIGINT(20),
 START DATETIME, END DATETIME, ADDRESS VARCHAR(255), PRICE INT);
INSERT INTO SESSION VALUES (1, 3, 5, ‘2015-03-22 09:30:00’, ‘2015-03-23 18:30:00’,
 ‘Madison Cultural Center, Main Square, 45032 Rogerville’, 160);
INSERT INTO SESSION VALUES (2, 4, 5, ‘2015-04-04 08:45:00’, ‘2015-04-05 19:15:00’,
 ‘City Hall Amphitorium, Central Station Avenue 1A, 93012 Sallytown’, 200);
INSERT INTO SESSION VALUES (3, 4, 14, ‘2015-05-02 08:45:00’, ‘2015-05-04 19:15:00’,
 ‘City Hall Amphitorium, Central Station Avenue 1A, 93012 Sallytown’, 300);
INSERT INTO SESSION VALUES (3, 4, 16, ‘2015-05-21 08:45:00’, ‘2015-05-21 19:15:00’,
 ‘City Hall Amphitorium, Central Station Avenue 1A, 93012 Sallytown’, 120);

In the insert statements, make sure the TEACHER_ID and COURSE_ID correspond to actual IDs in your
Wordpress database.

Extending the CMS Tables
As we have seen and will implement later, the security management and visual editor features can be reused
from Wordpress by mapping to the wp_users and wp_posts tables. However, these tables do not contain the
necessary fields to model the information defined in the system classes. For example, the wp_users table
contains a user_email field for the e-mail address but does not contain a field for the contact phone. Two

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

26

approaches compete here: create a newcustom table with the needed complementary fields or use the wp_
usermeta table convenience offered in Wordpress.

• 	 The new custom table option is more flexible: it is generic and allows the creation of any number of fields.

• 	 The Wordpress wp_usermeta table works only for extending the wp_users table, but no table creation
operation is needed.

In addition, we need fields for the first name and last name, as well as for the role the user plays in the
application (teacher of staff member). The first and last names are already implemented by default in
Wordpress and are located in the wp_usermeta table. The data can be easily accessed using the Wordpress
API. The role can be mapped to the Wordpress security clearance level system. For example, we may
define that teachers get the subscriber level, which is the lowest level, and that staff members get the
editor level, which is needed to encode courses. Check the Wordpress documentation to view the level
privileges in details. The other option is to declare a custom table field, which has the advantage of being
CMS independent.

Here is the PHP code that supports teacher retrieval and storage from the Wordpress schema:

public function getByLogin($login) {
 $person = new Person();
 $wp_user = get_user_by(‘login’, $login);
 $person->id = $wp_user->ID;
 $person->login = $login;
 $person->first_name = get_user_meta($wp_user->ID, ‘first_name’, true);
 $person->last_name = get_user_meta($wp_user->ID, ‘last_name’, true);
 $person->email_address = $wp_user->user_email;
 $person->contact_phone = get_user_meta($wp_user->ID, ‘contact_phone’, true);
 return $person;
}
public function update($person) {
 $wp_user = get_user_by(‘login’, $person->login);
 update_user_meta($wp_user->ID, ‘first_name’, $person->first_name);
 update_user_meta($wp_user->ID, ‘last_name’, $person->last_name);
 $wp_user->user_email = $person->email_address;
 update_user_meta($wp_user->ID, ‘contact_phone’, $person->contact_phone);
}

We leave as an exercise the writing of the code for retrieval and storage of the complementary fields from
a custom table. It is a mix of some of the above Wordpress API calls and additional SQL statements. The
SQL code can be inspired from the retrieval and storage of sessions:

protected function rowToSession($row) {
 $session = new Session($row->ID, $row->TEACHER_ID, $row->COURSE_ID);
 $session->start = $row->START;
 $session->end = $row->END;
 $session->address = $row->ADDRESS;
 $session->price = $row->PRICE;
 return $session;
}
function getSessions() {
 $query = “SELECT * FROM SESSION ORDER BY START”;
 $stmt = Connection::getInstance()->prepare($query);
 $stmt->execute();
 $sessions = array();
 while ($row = $stmt->fetchObject()) {
 $sessions[] = Session::rowToSession($row);
 }
 return $sessions;

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

27

}
function getSessionsByCourse($course) {
 $query = “SELECT * FROM SESSION WHERE COURSE_ID = :course_id ORDER BY START”;
 $stmt = Connection::getInstance()->prepare($query);
 $stmt->bindParam(‘:course_id’, $course->id);
 $stmt->execute();
 $sessions = array();
 while ($row = $stmt->fetchObject()) {
 $sessions[] = Session::rowToSession($row);
 }
 return $sessions;
}
function getSessionsByTeacher($teacher) {
 $query = “SELECT * FROM SESSION WHERE TEACHER_ID = :teacher_id ORDER BY START”;
 $stmt = Connection::getInstance()->prepare($query);
 $stmt->bindParam(‘:teacher_id’, $teacher->id);
 $stmt->execute();
 $sessions = array();
 while ($row = $stmt->fetchObject()) {
 $sessions[] = Session::rowToSession($row);
 }
 return $sessions;
}
function update($session) {
 $query = “UPDATE SESSION SET TEACHER_ID = :teacher_id, COURSE_ID = :course_id,
 START = :start, END = :end, ADDRESS = :address, PRICE = :price WHERE ID = :id”;
 $stmt = Connection::getInstance()->prepare($query);
 $stmt->bindParam(‘:teacher_id’, $session->teacher_id);
 $stmt->bindParam(‘:course_id’, $session->course_id);
 $stmt->bindParam(‘:start’, $session->start);
 $stmt->bindParam(‘:end’, $session->end);
 $stmt->bindParam(‘:address’, $session->address);
 $stmt->bindParam(‘:price’, $session->price);
 $stmt->bindParam(‘:id’, $session->id);
 $stmt->execute();
 return true;
}

The SQL code uses prepared statements, a recent introduction in the PHP language. With the ease of use and
data escaping, this kind of statements should be preferred for its readability and robustness, especially when
maintenance is the priority. The update method shows an extensive use of such a statement.

We provide here 3 SQL methods for retrieving sessions. getSessions returns all the sessions found in the
database. This method could be sufficient;if we want to filter on a teacher or a course, we can do it in a PHP
loop. We can also let the filtering be done by the SQL engine, which performs best in tables with many data.
We see howto do it in getSessionsByteacher and getSessionsByCourse. To avoid code redundancy and ensure
consistency between retrieval methods, we protect the row -to-object transfer in the row ToSession method.

The Connection object implements the singleton pattern, as a single connection is sufficient in our example,
and reuses the Wordpress database connection:

class Connection {
 private static $instance;
 public static function getInstance() {
 if (!self::$instance) {
 self::$instance = new PDO(
 “mysql:host=” . constant(“DB_HOST”) . “;dbname=” . constant(“DB_NAME”),
 constant(“DB_USER”),
 constant(“DB_PASSWORD”),

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

28

 array(PDO::MYSQL_ATTR_INIT_COMMAND => ‘SET NAMES ‘ . constant(“DB_CHARSET”)));
 self::$instance->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
 }
 return self::$instance;
 }
}

The Course class is similar to the Person class as it reuses Wordpress data but the Wordpress API calls are different:

function getByMnemonic($mnemonic) {
 $course = new Course();
 $wp_post = get_posts(array(‘name’ => $mnemonic))[0];
 $course->id = $wp_post->ID;
 $course->title = $wp_post->post_title;
 $course->description = $wp_post->post_content;
 return $course;

}

OO and Persistence Layers
As we have seen in writing the code for the various system classes, we introduce two new layers that
encapsulate some of the complexity (Figure 6):

1. OO layer: classes, fields, and methods

2. Persistence layer: classes-to-DB mapping implementation (CMS and SQL code)

Figure 6. new architecture with OO and persistence layers

To implement these layers, we create two files OO.php and persistence.php. The OO file contains the system
classes definitions: Person, Session, Course. The Persistence file contains the corresponding persistence
implementations: PersonPersister, SessionPersister, and CoursePersister. Each persister class realizes the
singleton pattern, as only one instance is needed:

class PersonPersister {
 private static $instance;
 public static function getInstance() {
 if (!self::$instance) {
 self::$instance = new PersonPersister();
 }
 return self::$instance;
 }
 // retrieve-and-storage functions
 // ...
}
// ... idem for SessionPersister and CoursePersister

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

29

As for an example of use, retrieving a teacher from its login can be coded like this:

$teacher = PersonPersister::getInstance()->getByLogin($login);

Code Readability
In Wordpress, we tweak the index.php theme page so the code can be accessed through the following
address: http://www.domain.com/?action=DisplaySessions.

In the index page, the session display code is externalized into a separate PHP theme page:

if (isset($_REQUEST[‘action’])) {
 include($_REQUEST[‘action’] . ‘.php’);
}
else {
 // ... standard index.php display code
}

The externalization of the code into separate pages depending on the requested action realizes a simple MVC
pattern (Figure 7):

Figure 7. Simple MVC pattern in Wordpress

• 	 The controller is the Wordpress framework passing the request to the index.php page, which in turn
extracts the action request and its parameters to pass it to the corresponding page.

• 	 The view is the page delivering the requested action; operations, data retrieval, and display.

• 	 The model is the OO code layer, backed with its persistence layer and the database.

In the separate DisplaySessions.php page, the display code is minimal:

$sessions = SessionPersister::getSessions();
foreach ($sessions as $session) {
 // show session data in HTML
}

Typical session data display presents the information in a rich HTML way, composed from the various
session fields, in something like CSS-styled tables filled in with the useful information. Here is an example
of table row:

<? $teacher = $session->getTeacher(); ?>
<? $course = $session->getCourse(); ?>
<tr class=”session”>
 <td><a href=”<?= $course->getDescriptionURL() ?>”><?= $course->title ?></td>
 <td><a href=”mailto:<?= $teacher->emailAddress ?>”><?= $teacher->firstName ?>
 <?= $teacher->lastName ?></td>
 <td><?= formatDateTime($session->start) ?></td>
 <td><?= formatDateTime($session->end) ?></td>
 <td><?= $session->address ?></td>

http://www.domain.com/?action=DisplaySessions

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

30

 <td>$<?= $session->price ?></td>
</tr>

The table rows show the basic information for the students to take a course (Figure 8). The course title links
to a detailed description of the course content. The link is provided in getDescriptionURL() by a Wordpress
API call to wp_permalink – another Wordpress feature reuse. The teacher’s name provides a link to send
an e-mail, for example to get more information about the course and register for a session. The session start
and end datetimes are formatted using the PHP facilities. The address where the session occurs may link to a
Google Map for access directions. It is also possible to provide a Google Map below the table and show all
the places where a session is planned. We do not interact with Google Map here but the Google Map API for
PHP simply needs a few Session fields to display a map.

Flexible Feature Addition
Adding features is also easy. For example, if we want to provide a session filter based on a particular course,
the code needs little change:

$course = CoursePersister::getByMnemonic($_REQUEST[‘course’]);
$sessions = SessionPersister::getSessionByCourse($course);
foreach ($sessions as $session) {
 // show session data in HTML
}

The HTTP request call requires the course reference as parameter:

http://www.domain.com/?action=DisplaySessions&course=online-art

The course mnemonic is passed as reference and is filtered through the Wordpress framework.
The framework task structures the request and passes it to the index.php file, where our controller calls the
DisplaySessions.php page. The first step in the page is to retrieve course data as an object from the persister.
The session persister retrieves the sessions for the course, structured in an array that can be parsed to display
the useful information in an HTML table (Figure 8):

Figure 8. Session display for a particular course

Unlayered Code
As a comparison with our approach, the unlayered code to access the Wordpress system and custom data
could look like this:

http://www.domain.com/?action=DisplaySessions&course=online-art

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

31

if (isset($_REQUEST[‘action’]) && ($_REQUEST[‘action’] == ‘DisplaySessions’)) {
 $connection = new PDO(
 “mysql:host=” . constant(“DB_HOST”) . “;dbname=” . constant(“DB_NAME”),
 constant(“DB_USER”), constant(“DB_PASSWORD”),
 array(PDO::MYSQL_ATTR_INIT_COMMAND => ‘SET NAMES ‘ . constant(“DB_CHARSET”)));
 $connection->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
 $query = “SELECT * FROM SESSION ORDER BY START”;
 $stmt = $connection->prepare($query);
 $stmt->execute();
?>
<table><tr><th>Course</th><th>Teacher</th>
<th>Start</th><th>End</th><th>Address</th><th>Price</th></tr>
<?
 while ($row = $stmt->fetchObject()) {
?>
<tr class=”session”>
 <td><a href=”<?= get_permalink($row->COURSE_ID) ?>”>
 <?= get_post($row->COURSE_ID)->title ?></td>
 <td><a href=”mailto:<?= get_userdata($row->TEACHER_ID)->user_email ?>”>
 <?= get_user_meta($row->TEACHER_ID, ‘first_name’, true) ?>
 <?= get_user_meta($row->TEACHER_ID, ‘last_name’, true) ?></td>
 <? $start_dt = DateTime:createFromFormat(“Y-m-d H:i:s”, $row->START) ?>
 <? $end_dt = DateTime:createFromFormat(“Y-m-d H:i:s”, $row->END) ?>
 <td><?= $start_dt->format(‘d’) . ‘/’ . $start_dt->format(‘m’) . ‘ ‘ . $start_dt->format(‘Y’)
 . ‘ ‘ . $start_dt->format(‘H’) . ‘ ‘ . $start_dt->format(‘i’) ?></td>
 <td><?= $end_dt->format(‘d’) . ‘/’ . $end_dt->format(‘m’) . ‘ ‘ . $end_dt->format(‘Y’)
 . ‘ ‘ . $end_dt->format(‘H’) . ‘ ‘ . $end_dt->format(‘i’) ?></td>
 <td><?= $row->ADDRESS ?></td>
 <td>$<?= $row->PRICE ?></td>
</tr>
<?
}
?></table><?
}

The code is a mix of Wordpress framework structure, database connection, SQL code, Wordpress library
calls, data formatting, and HTML display instructions. With the growing complexity of the application, code
mix becomes less readable. In addition, changes in the Wordpress library, in the Wordpress database, or in
the business database imply reviewing the entire code, which takes time and is prone to forgets and errors.
While code mixing is fine for prototypes that remain so, separating the layers becomes necessary when
writing a working web application, especially when it grows in complexity.

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

32

One Last Example: Adding A Google Map
Adding a feature like a Google map displaying the sessions for a course is quite easy and benefits from our
approach as well. Using the same OO and persistence layers, the Google map code looks like this:

$course = CoursePersister::getByMnemonic($_REQUEST[‘course’]);
$sessions = SessionPersister::getSessionByCourse($course);
foreach ($sessions as $session) {
 $teacher = $session->getTeacher();
 $map->addMarkerByAddress(
 $session->address, // locates the marker
 $teacher->firstName . ‘ ‘ . $teacher->lastName, // marker title
 ‘getDescriptionURL() . ‘”>’ . $course->title . ‘
’ .
 formatDateTime($session->start) . ‘ - ‘ . formatDateTime($session->end) . ‘ : ‘ .
 $teacher->firstName . ‘ ‘ . $teacher->lastName . ‘
’ .
 $session->address); // detailed box
}

The code here shows what you need to feed to the Google Map API for PHP. Detailed code to add before and
after the code above is routine and can be found in the sample code package. The specifics shown here are
the addMarkerByAddress parameters required by the API. With a loop on the course sessions and calls to the OO
objects, the data to display is easy to obtain. This shows how much our approach is simple yet powerful for
more complicated features to add.

Figure 9. Google map displaying available sessions

The map shows up and centers on the course sessions to display. Here we show the example with two course
sessions. In the map display code, the 3 addMarkerByAddress parameters behave as follows:

1. The marker locates the session address.

2. When the mouse is over the marker, a small title box – not shown on the picture – pops up and displays the
teacher’s name.

3. When the mouse clicks the marker, a detailed bow appears and displays the course title with a link to the
course description, the course start and end, the teacher’s name and the session address.

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

33

Every feature we want to add are easy to write, read, and maintain. We could add a login box within the
theme look and feel. Or we could add a session encoding form for the teachers. Our approach makes the
code easy and natural.

Conclusion
As we have seen, CMS-based web applications allow rapid prototyping and reuse of CMS features like
security management, database schema, and visual editors. However, integrating business code into the
CMS can produce cumbersome, hard-to-maintain code. With the proposed approach that introduces OO and
persistence layers, the business presentation code becomes clear, easy-to-maintain, and independent from
the CMS. For example, Wordpress specifics are isolated into the persistent layer: any change made through
Wordpress versions, or any kind of CMS replacement – even to another system like Drupal or SPIP, needs
no business code change; everything to be changed can be found in a single layer. This isolation limits the
number of changes to be made into the business presentation code and allows the presentation code to focus
on business. Any kind of business change request or extension can be implemented into the focused code:
given how simple, clear, and readable it is, change request implementation and bug-fix maintenance are
made easy, fast, and reliable.

References
• 	 Philippe Kruchten, The Rational Unified Process: An Introduction, Addison-Wesley professional, 2003.
• 	 Grady Booch, James Rumbaugh, Ivar Jacobson, The Unified Modeling Language User Guide, Addison-Wesley

professional, 2005. Kurt Bittner, Ian Spence, Use Case Modeling, Addison-Wesley professional, 2002.
• 	 Ueli Wahli, Jean-Pierre Norguet, Jonas Andersen, Nicole Hargrove, Markus Meser, WebSphere Version 5 Applica-

tion Development Handbook, IBM Redbooks, 2003: a lot about OO and Persistence (with J2EE)
• 	 Wordpress Codex: http://codex.wordpress.org
• 	 PHP Google Maps API: http://bradwedell.com/php-google-maps-api

About the Author
Jean-Pierre Norguet holds a Ph.D. in applied science and ICT from University of Brussels
(ULB). In addition to several articles online, Dr. Norguet’s publications include J2EE
books w ith Prentice Hall and IBM Press, as w ell as several articles in international
research conferences, the proceedings of w hich have been edited by major scientific
organizations like ACM, IEEE, and Springer-Verlag. He contributed as a consultant,
expert, and mentor to many ICT R&D projects, w ith a permanent strong concern about
ethics. His other areas of interest include neuroscience- based stress management, peaceful
interpersonal communication, and ecology-minded sobriety living.

http://www.redbooks.ibm.com/redbooks/pdfs/sg246993.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg246993.pdf
http://codex.wordpress.org/
http://bradwedell.com/php-google-maps-api
http://jpn.alternatifs.eu/

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

34

Brand Integrity With Effective DevOps
by John Marx with Cigna and Capital One

Capital One, Cigna and Red Hat share high brand recognition and integrity. In the era of
HIX Moments and Nasdaq Outages, we read in the daily news how ineffective IT processes
can mar our companies’ most treasured assets, our brands!

As business agility, cloud computing, social networks, and mobile computing, drive IT to an ever-increasing
rate of software release, IT operations and development must become a unified force. Whether through
dynamically provisioning stable development environments, or practicing continuous integration and delivery.
Automation is a key to achieve better speed-to-market. This workshop and speakers’ panel include leading
professionals from three of our nation’s premiere brands. Come hear and investigate how PaaS, IaaS, and SaaS
are changing the way we work and how innovative technologies such as OpenShift and OpenStack are meeting
this need. Effective DevOps includes flawless testing, security and governance. Red Hat platforms and Red Hat
Consulting’s agile processes meet the needs of today’s fast paced IT while doing so in a flexible way.

Moderator
John Marx, CSM, CSP, SPC – Red Hat Consulting, Principal within the Agile Practice.

Speakers Panel
• 	 Jason D. Valentino – Capital One Labs – Technology Innovation

• 	 Curtis Yanko – Cigna Corporation, Architecture Manager – DevOps

This panel will provide concrete examples of how Red Hat technologies and agile delivery processes,
increase speed-to-market, reduce project and business risk, sustain high quality, and embrace change.

Specific Topics include
• 	 Cultural and Organizational prerequisites for effective DevOps

• 	 Reducing Risk through Continuous Integration and Continuous Delivery

• 	 Working toward a ‘mature model’ based on a Jez Humble’s book titled Continuous Delivery

• 	 Moving beyond perimeter hardening to prevent malware intrusion through third-party software libraries

• 	 Prevention of Trojan malware through effective license management and use of resources such as Internet
Crime Complaint Center (IC3) and NIST.org vulnerabilities lists

• 	 Using the Scaled Agile Framework and establishing collaborative DevOps through a ‘System Team’

About the Author
John Marx is a Services Delivery Manager and Principle Consultant within Red Hat’s
Agile Practice. He carries the Scrum Alliance’s certifications such as Scrum Master,
Scrum Professional and the Scaled Agile Framework’s certification as a Scaled Agile
Program Consultant.

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

35

Actualizing The Potential Shippable
Increment
by John Marx

As Agile and DevOps gain popularity among enterprise organizations, the hype around
these important disciplines increases. Discovering the true meaning of these terms and the
practices they entail helps developers, architects and managers alike to thrive in their careers.
Understanding how Agile development and Continuous Integration links with DevOps and
Continuous Delivery is fundamental to reducing project risk and the on delivery expectations.

Closing the deal with the business requires the development teams not to just aim for the completion of code,
but also to remain vested in the delivery processes to assure deployment. The steps to achieving business
returns involve processes as simple as buying a used car. To avoid the jalopy, you must strike a bargain, test
drive the vehicle, and close the deal.

At its onset in Snow Bird Utah agile was born by a developer-centric group of stakeholders. To their
credit, they sought a better way and in their manifesto, they valued “Customer collaboration over contract
negotiation”. But, the walls built between IT and the Business strike me as fortifications not built on tamped
earth but instead, mistrust.

While agile pundits love to speak of ‘The Fall of Waterfall” the silos within the enterprise remain safe
storage for fodder. Fortunately, with DevOps, there is a hope that the integrated enterprise may yet flourish.
When Continuous Integration stretches back to the customer with Acceptance Test-Driven Development and
reaches forward to operations with Continuous Delivery, the potential of fast and frequent releases may be
actualized into real Return on Investment (ROI).

I dream of CEO’s abdicating shareholder-centric planning which includes arbitrary annual planning cycles
and myopic quarterly performance reviews for a system that is built on customer value and conscientious
capitalism. While in its infancy, DevOps holds the promise of making this fantasy as a reality. To achieve
this aim, three fundamental principles must be applied.

The Grand Bargain
The first principle which needs to actualize the potential of incremental delivery, is what I call “The Grand
Bargain”. In an environment of mistrust formed through years of disappointments, a leap of faith is needed. The
business had approached IT with amicable goals asking two questions in the past: How much? And How Long?

In reply to these, the pragmatic engineering types within IT reply with padded estimates and bloated budgets.
The following round of the infamous used-car volley typically involves the haircut where the empowerment
of IT begins with half the time and half the investment, yet no one has ever reduced the desired return nor
the required scope.

Turning the delivery triangle upside down has been proposed as the means of achieving agility. This involves
the assurance of predictable processes by fixing the time, schedule and floating scope. Agile relies heavily
on the prioritization of backlogs to ensure that the need-to-haves are completed by the shortened project
life cycle and that the nice-to-haves are the only stragglers that slip to release 2.0. This is a step in the right
direction, but falls way short of a grand bargain.

The impediment is that most business stakeholders and customer proxies don’t remain engaged through
iterations. So that, Sprint Planning truly prioritizes by business value. The reality that the Product Owner
merely provides a contingent definition of done is a key hindrance to customer delight. All too often test
results reviewed are seen only by analysts and developers, possibly some QA folk, but rarely the drivers of
IT investment.

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

36

The Grand Bargain is the covenant that should be established at a project’s onset when IT agrees to the
haircut. A simple commitment by the project’s sponsors to provide a viceroy for the ongoing planning and
review will ensure that the scope is floating on a smooth sea. Naturally, this business representative must
recognize that the demonstration of a working software is the pinnacle means of measuring progress, but
also strip themselves of the plaid jacket and instead roll up the Oxford sleeves to invest in the alignment of
incremental delivery with customer expectations. Only through this, the ongoing and iterative alignment and
realignment may change to be embraced rather than resisting, and only by eliminating feature decay, we may
secure our revenue realization and cost savings that remain paramount to Wall Street.

The Test Drive
No one would ever buy a used car without taking it for a spin. The risk of leaving the lot with a lemon is
all too real. So why when making IT investment in software do so many business stakeholders end up with
clunkers? I believe it is because people strive to develop software correctly rather than develop the correct
software. Somewhere in our history of lobbing requirements documents over cubicle walls the fidelity gap
with business requirements began and to bridge that gap someone needs to get out of their Aeron and spend
some time watching demos.

But tests are scary. Sweaty palms and dry mouths abound whenever someone with the power to write checks
enters the room. And just as a suitor on a blind date stumbles for words to articulate the ascetical beauty of
their companion, software developers often wave their arms about gee-whiz features and better mousetraps
leaving the pen-striped suitor from accounting wondering just what the heck they are looking at.

The Test Drive has to put the business stakeholder behind the wheel of the Sprint Demo. The driver is
the business value and the alignment of features with the enablement of the customer. The how’s focused
upon becoming the all-too-important bridge between concepts and abstractions and true application and
practice. It is no longer acceptable to speak of how the software works, but instead an in depth conversation
about how the business works must ensue. As this dialogue continues the define-build-test teams become
enlightened to the assumptions made by the customer and realize any gaps between how they think their
software will be used and how the non-technical consumer of the invention will actually use it.

All of a sudden bits-and-bytes and speeds-and-feeds are replaced by the issues surrounding governance, risk
management, audit and compliance. Organizational readiness and standard operating procedures take their
proper place in the conversation and in depth and deliberate realities as to how and whether the software
designed may actually be implemented becomes a key concern. To properly align delivery with expectation,
a new stakeholder must join the team, namely operations! Hence DevOps the portmanteau of Development
and Operations becomes the key practice to take Continuous Integration to Continuous Delivery. To do this,
a new third principal must be practiced and that is credit approval.

Credit Approval and Closing The Deal
After the wife and kids ooh-and-ahh over the leather seats and great stereo Dad’s palms start to sweat
again because the next stop is the finance office. Soon, he is listing credit card accounts and social security
numbers, knowing that a blue-suited credit manager is about to use cathode ray tubes to examine his life’s
work and sum it up in a single number, his FICO score. Only when this score is high enough, it will give the
keys and perish the thought that errors in the credit report may need to be cleansed to drive the car home.
Just like software, the detection of errors later in the process may delay closing the deal.

This step of determining whether matters are unrelated to the technical and functional performance of
the car, a metaphor for our application, is analogous to the realities of operations and their impact on the
drivability of our software, issues such as security for the first line of the contract. Risk management insists
on knowing the business impact of the changes in procedure and the fault resilience that is needed to prevent
the outage of critical business functions. Audit wishes to run parallel tests and balances to the penny the
outcomes of complex logic and calculations. Compliance has a book of their own that only they know how
to read and they must assure the team that no rules are broken and no regulations missed in our complex
systems that remain yet to be used in production.

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

37

The whiz and whir of these stakeholders’ deliberations all too often are something engineers have no
patience for. Too many times the brilliant developer comes off as mad scientist within this new cast of
characters. This is why scaling agile in enterprises becomes a prerequisite when aligning the delivery
of teams running in parallel. In many cases, this Governance, Risk Management, Audit and Compliance
(GRAC) practice becomes a team of its own that must run in parallel and participate in the Scrum of Scrums
or PSI Release Review and planning processes typically performed at the Program level.

Continuing to ignore these critical business reviews forces User Acceptance Testing (UAT) processes to
find and remedy defects late in the development cycle causing unanticipated increases in cost and delays
in schedule. Developers must not thump that chest at code completion and instead begin to invest in these
downstream realities to truly deliver. Without these GRAC reviews the fixed points on our delivery triangle
of time and cost now bend with the wind and our predictive process falls prey to reality after the developers
thought it was time to go home.

Accommodating a realistic CI/CD (Continuous Integration/Continuous Delivery) lifecycle that includes
GRAC and even automates many of these reviews prevents a glut of shelf-ware between development and
operations. Even more, the revision of requirements and features brought about by this early understanding
of implementation constraints allows a realistic prioritization of the true need-to-have’s and eyes wide open
by collaborative teams may enjoy mutual accountability that results in credit approval. The Non Functional
Requirements (NFR) codified through effective architecture and the feature-driven process tailoring resulting
from GRAC reduces time to market and risk while sustaining quality. Few Software Development Life Cycle
(SDLC) frameworks offer so much for so little. Join the IT Revolution and transform unrealized potential
through the disciplined practice of DevOps.

When credit is given we can all drive home in our shiny new system.

On the Web
• 	 Red Hat and Test-Driven Development http://www.redhat.com/consulting/enterprise-solutions/agile-development/

test-driven-development.html
• 	 Red Hat Consulting’s Agile Adoption Workshop https://www.redhat.com /resourcelibrary/datasheets/red-hat-agile-

adoption-workshop-datasheet

About the Author
John Marx is a Services Delivery Manager and Principle Consultant within Red Hat’s
Agile Practice. He carries the Scrum Alliance’s certifications such as Scrum Master,
Scrum Professional and the Scaled Agile Framework’s certification as a Scaled Agile
Program Consultant.

http://www.redhat.com/consulting/enterprise-solutions/agile-development/test-driven-development.html
http://www.redhat.com/consulting/enterprise-solutions/agile-development/test-driven-development.html
https://www.redhat.com/resourcelibrary/datasheets/red-hat-agile-adoption-workshop-datasheet
https://www.redhat.com/resourcelibrary/datasheets/red-hat-agile-adoption-workshop-datasheet

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

38

Languages in UIs
by Damian Czernous

At some point, it might happen that your application will go worldwide and marketing people
will tell you a story about reading in a native language. “Reading in Polish bounds Poles
better to our service”. They’ll say that internationalization is a business requirement.
Application architecture should scream about business requirements. The application structure (folders and
packages) should describe what the application can do. For example, com.sanecoders.bakery.product.list means
that sanecoders.com owns bakery application that can present bakery products. A bad architecture describes
what the application is made of, because it exposes the mechanisms instead of purpose. A one.community.
bakery.controllers shows that community.one owns bakery application that has controllers. If there is a view
package, there will be a big chance that the application is made of the MVC design pattern.

The MVC or any other design pattern is just a detail from the architectural point of view. It goes without saying
that these patterns allow accomplishing certain goals, but they’re not a reason we create applications.

When we see a car, it’s pretty easy to guess its purpose. This is because we see its size, number of seats, the size
of the empty space, etc. The first look at the car tells us nothing about patterns it’s made of. We should expect
the same for the bakery application – to see the features (user stories) that create it.

There are also other details such as database (OracleDb, CouchDb), UI frameworks (Swing, Vaadin),
application frameworks (Java EE, Spring), etc. They are all just tools and good architecture makes them easily
exchangeable. The good architecture describes user stories.

A UML or any other helpful notation simplifies the design process, but it’s not an architecture. A drawing can’t
serve services and after a while, it’s nowhere near how the code actually works. Dictionaries define architecture
as a process of both planning and constructing, so it’s a final product that works in a thoughtful manner.

Architecture by Oxford Dictionary: “the conceptual structure and logical organization of a computer or
computer-based system”. It doesn’t mean the logical organization of a drawing of the future system.

Keynote

Architecture decides on a place, on a name and a relationship between components. The code, package, folder
or any file is a method of recording architecture. In a nutshell, architecture is a code. Architecture is a method
of recording business requirements. A business requirement speaks through a very concrete architecture.

Based on that, the architecture of internationalization, which is a business requirement should describe it
comprehensively. However, the mechanism that makes it operational, is a detail and shouldn’t be visible at
first glance.

Architecture
Continuing with the bakery application example, we may introduce I18n interface. The I18n stands for
internationalization, where the number 18 represents middle characters of that word. For more details, read
the Glossary of W3C Jargon. To see whole code or run an application, please follow the steps:

• 	 clone sources: git clone https://bitbucket.org/sanecoders/bakery.git

• 	 navigate to bakery folder

• 	 execute maven command: mvn package jetty:run

• 	 navigate to: http://localhost:8080

https://bitbucket.org/sanecoders/bakery.git

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

39

package com.sanecoders.bakery.ui;
public interface I18n
{
 void setI18nGateway(I18nGateway i18nGateway);
 void updateTranslations();
}

The best place for the interface is com.sanecoders.bakery.ui package, which tells us that bakery application
(owned by sanecoders.com) has some UI that, probably among other things, supports internationalization.

Every application page has to follow this interface. Although, its usage is optional. After all, it’s just an
interface. This supports extensibility without forcing and it’s at the engineer discretion whether he or she
wants to follow it. Let’s move to the implementation.

package com.sanecoders.bakery.product.list.ui;
public class ProductListView implements I18n
{
 @Override
 void setI18nGateway(I18nGateway i18nGateway) (...)
 @Override
 void updateTranslations() (...)
}

The ProductListView class on translation update call (updateTranslation() method) uses I18nGateway to translate
its parts. The I18nGateway is a generic implementation of the translation mechanism – the detail.

This is how the I18n interface screams about available internationalization. The ProductListView class uses it,
therefore it’s expected to be a language sensitive. It seems to be obvious just after reading the class declaration.
The I18nGateway class delivers translation mechanism, but without details on how it works. It just works.

package com.sanecoders.bakery.ui;
public class I18nGateway
{
 private final String i18nSourceName;
 public I18nGateway(String i18nSourceName)
 {
 this.i18nSourceName = i18nSourceName;
 }
 public String translate(String key, Locale locale)
 {
 return ResourceBundle.getBundle(i18nSourceName, locale).getString(key);
 }
}

The mechanism is pretty simple. It uses Java ResourceBundle class to access available files that keep
translations. This is a general design of the translation mechanism.

Comment

The bakery application is a small one and only one translation mechanism is needed. In case of more
advanced solutions, I18nGateway should exist as an interface rather than an implementation class. It also
should be easy to introduce such abstraction at any time, e.g. by extracting interface. This is what I call
engineering awareness. On one hand, the solution is small enough without ambiguous structures and on
the other hand, it’s extensible. Keeping solution extensible is one of the fundamental unspoken client
expectation that engineers need to meet when writing every line of the code. After all, people build things
through extension.

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

40

Propagation of the architecture
The vast majority of the applications consist of many features that are grouped into the feature groups.
The bakery application is not any different. The described ability to list bakery products is part of a product
management component (com.sanecoders.bakery.product) that consists of list (com...product.list), add and edit
(com...product.edit) features. What is more, it has also a user management component (com.sanecoders.bakery.
user) that consists of a sign in (com...user.login), a sign out (com...user.logout) and language switch (com...
user.language) features. Each of these functionalities (modules) plays a role of the independently deployable
application unit. It’s possible to plug in or plug out every module just by administrating the main pattern. It’s
a really good idea to maintain this status quo.

The possible solution is to provide internationalization within each module that will contain one translation
file per each supported language. This is example of Polish language.

resources/com/sanecoders/bakery/product/list/ui/messages_pl_PL.properties
product.list.add = dodaj
product.list.edit = edytuj
product.list.save = zapisz
product.list.remove = usu\u0144
product.list.product.name = nazwa
product.list.product.price = cena

The platform, in our case bakery (com.sanecoders.bakery.ui package), advises modules about the supported
languages. This is done with SupportedL10ns interface, where l10n stands for localization (read more about
W3C jargon).

package com.sanecoders.bakery.ui;
public interface SupportedL10ns
{
 Locale POLISH = new Locale(“pl”, “PL”);
 Locale ENGLISH = Locale.ENGLISH;
}

Now, it’s time to advise UI components to use prepared translations.

package com.sanecoders.bakery.product.list.ui;
public class ProductListView implements I18n
{
 public static final String ADD_PRODUCT_ACTION_I18N_KEY = “product.list.add”;
 public static final String EDIT_PRODUCT_ACTION_I18N_KEY = “product.list.edit”;
 public static final String SAVE_PRODUCT_ACTION_I18N_KEY = “product.list.save”;
 public static final String REMOVE_PRODUCT_ACTION_I18N_KEY = “product.list.remove”;

 private I18nGateway i18nGateway;
 @Override
 public void setI18nGateway(I18nGateway i18nGateway)
 {
 this.i18nGateway = i18nGateway;
 }
 @Override
 public void updateTranslations()
 {
 if(Objects.nonNull(i18nGateway))
 {
 actions.forEach((action) -> action.component.setCaption(i18nGateway.translate(
action.captionI18nKey, getLocale())));
 }
 productTable.updateTranslations();

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

41

 }
 public void addToActionLayout(Component component, String captionI18nKey)
 {
 if(actionLayout.getComponentIndex(component) == NOT_EXISTING_COMPONENT)
 {
 actions.add(new Action(component, captionI18nKey));
 actionLayout.addComponent(component);
 }
 }
 (...)
}

The ProductListView class represents the bakery product list page. It provides the possibility to add actions
through the addToActionLayout (...) method. The second argument is the caption internationalization key,
which is used to find a concrete translation. It also provides predefined keys for actions such as add, edit,
save and remove.

The last but not least, is to specify a place for the module translation resources.

package com.sanecoders.bakery.product.list.ui;
public final class ProductListI18nGateway extends I18nGateway
{
 public static ProductListI18nGateway create()
 {
 return new ProductListI18nGateway(“com.sanecoders.bakery.product.list.ui.messages”);
 }
 private ProductListI18nGateway(String i18nSourceName)
 {
 super(i18nSourceName);
 }
}

The ProductListI18nGateway class declares the translation resources in .../product/list/ui folder – especially
using messages file.

Localization
With internationalization usually localization goes in a parallel. This is because localisation is an enabler
for the translation mechanism. The I18nGateway API requires information about currently used localization to
search for a proper translation.

Depending on a chosen UI framework, the localization mechanism may differ. The bakery application
uses Vaadin, which carries such information within the UI object. Then, the information is propagated to
the underlying objects e.g. buttons. To be honest, Vaadin 7 mechanism is a bit different. It’s more static
and requires additional implementation to be dynamic (see L10nController class and enter() method of the
ProducListView class, which executes translation on the page enter), but essentially it works like this. At the
end, ProductListView class, which extends Vaadin layout, may call simply getLocale() method to get desired
information.

Reusability
Do we really have to follow internationalization architecture within each module? Maybe it’s also fine to
just handle it on an upper level where a group of modules belong to. For example, the product manager (com.
sanecoders.bakery.product) is a platform for the bakery list and edit modules. Thus, maybe we can handle
translation only there – one translation file for all modules of the product manager per each supported language.

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

42

We need to be careful with this assumption. Each module of the bakery application is a separately deployable
unit. All associations, direct towards the platform. If one of the modules is to be part of the bigger family,
it needs to follow family’s rules. This is why the product manager decides e.g. on how the communications
between underlying modules should look like. What is more, none of the modules should know each other
and the platform should not know any details about modules too. For example, none of the classes from com.
sanecoders.bakery.product knows anything about the content of the com...product.list or com...product.edit
package. None of the classes from com...product.list knows anything about the content of the com...product.
list.ui package.

Comment

Above doesn’t seem to be true for com...product.list.ui and com...product.list.ui.table packages. Please, be
careful when making some general patterns based on one example. There’re many rules involved in decision
about structuring packages. This is a different story.

This is a concept of the plug-inable architecture, where we can plug in or out modules and reduce or extend
functionality. This also supports reusability, because we may reuse product list for different UIs or reuse the
product manager for different product list or edit modules.

Handling internationalization on an upper level will break that design, because platform will define (know)
details of the underlying modules. For example, above translation file for Polish language defines add, edit,
save and remove translation keys for the product list module. However, on the product manager level, this
file will define keys for the product edit module too. Consequences:

• 	 Translation keys may contain errors, key names might be limiting, too few defined keys for the modules
etc. This is a minor issue or a big one. All depends on how quick we can apply changes or who is the
owner of the code: we or another company. Creating extensible solutions (as said before) is a fundamental
unspoken user expectation. Unspoken is the synonym of non-functional requirement e.g. used in Software
Requirements Specification.

• 	 Modules do not necessarily have to know about these globals, which will result in hard discovery of
resource duplication.

• 	 Violates encapsulation, as part of the module details (translation keys) are outside the module and can be
changed from outside.

• 	 Violates The Common Closure Principle, because classes (here classes and resources) are not packaged together.

• 	 Violates The Common Reuse Principle for the same reason.

The answer is: yes, we really want to internationalize each module separately.

A not Recommended Solution
Occasionally, internationalization can be seen as an unimportant detail instead of an important business
requirement. Let’s ponder on it for a moment.

The idea is to extend each Vaadin’s object with a translation mechanism (e.g. LangButton, LangTextField, etc)
and close them together in a special com.sanecoders.bakery.ui.vaadin package.

This solution seems to have several defects. From now on, we have to maintain all extended objects that are
sensitive to framework upgrades. Testing isn’t clean, because we are forced to spy testing objects. This is the
price we need to pay for customizing a 3’rd party’s framework.

Adding new functionality by the extending existing objects was largely used in the 80’s. Such technique is
called Programming by difference. It’s quite useful e.g. in unit testing, but it has troublesome traps which
grow with the code. As a result complex code drown many projects. That was an important lesson we got.
For more details read “Working efficiently with Legacy Code” chapter 8 page 94 by Michael Feathers.

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

43

Vaadin Context
When using Vaadin, we may use AppFundation plugin to provide internationalization. This is a static
solution where translation takes place during an object creation. In practice, this happens on URL enter or
page reload. Therefore, it’s not possible to update translations in working application e.g. via link.

In modern web application, it’s quite “strange” e.g. to be logged out after reloading the page. This is exactly
what happens after re-initialization (previous session object has been dropped). To prevent that, we may
decide to run application in a preserve mode using @PreserveOnRefresh annotation. Unfortunately, such setting
limits translation capabilities, because the mentioned plug-in does the job during creation (see createField()
method of the I18nForm class).

From the architectural point of view, such solution hides existence of the internationalization in the
application. We talked about this in the previous chapter.

The AppFundation plugin mechanism equivalence is mentioned earlier L10Controller class plus the
trigger for translation, which is the enter() method of the View interface (see e.g. ProductListView class for
reference). These two little things deliver the dynamic mechanism.

Summary
When we talk about internationalization, few things have to be covered:

Figure 1. Internationalisation design

Architecture

• 	 The way we say this page is language sensitive – ProductListView class implements I18n interface.

• 	 The mechanism gateway for finding translations – I18nGateway class used with I18n interface.

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

44

Translation mechanism

• 	 The mechanism of retrieving translations – Java ResourceBundle used within I18nGateway class.

• 	 The storage for translations – messages files (consequence of using Java ResourceBundle).

Enabler point

• 	 The localization information provider (determines the preferred language) – I18nController class updates
localization.

• 	 The translation runner – ProductListView implements Vaadin View’s enter() method – invoked on page enter.

The translation mechanism and the enabler point are the details of the internationalization architecture. Both
can be replaced with different frameworks. Java ResourceBundle e.g. with any database engine and Vaadin e.g.
with another UI solution.

Solutions such as AppFundation plug-in delivers translation mechanism, which bounds the application with
technology. This is because they make shortcuts that can be seen an easy use (nice annotations, less code,
greater transparency). Usage of this concrete plug-in removes internationalization architecture entirely from
the application, leaving just mechanisms (translation and enabler). In case of moving away from Vaadin, the
internationalization code will have to be changed instead of just replacing enabler point. To be honest such
refactoring doesn’t seem to be that difficult. It’s just brainless and time consuming work. The problem is in
thinking. If the internationalization was organized in that way, so other aspects are probably too. A brief look
at such code can successfully kill motivation to act.

On Web

• 	 Architecture by Oxford Dictionary, http://www.oxforddictionaries.com/definition/english/architecture

• 	 Glossary of W3C Jargon, http://www.w3.org/2001/12/Glossary#I18N

About the Author
Damian Czernous is a software engineering coach at Nokia Networks, who wants to share his knowledge
with others. He is passionate about reasoning in engineering. This is an example of his work. Feel free to
comment on it!

http://www.oxforddictionaries.com/definition/english/architecture
http://www.w3.org/2001/12/Glossary#I18N

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

45

Design Patterns in Perl – Part 1
by Pravin Kumar Sinha

This is about designing in Perl. As Perl is an object oriented language, object oriented
design in Perl is obvious. This document talks about the patterns used in Perl designing. A
pattern is a basic unit of designing. When analysis phase is done the closest pattern is looked
for the solution, or even some hybrid pattern also looked for a solution. Since patterns are
well defined and tested way in solving the problem, once identified, can prove stable design
and non modifiable code.

The more available patterns in different aspect of designing area supported in a language, more powerful
that language is. In the document 23 GOF design patterns are discussed and implemented through Perl code.
23 design patterns are distributed among 3 categories. Creational, structural and behavioral. This document
is written in the sequel and contains descriptions for creational patterns. The structure is in part 2 whereas
behavioral in part 3.

Creational Design Patterns
Creational design pattern deals with creating the object, creating the component. A component is created
or generated in two ways, generation from scratch (first of its kind) and generation from cloning. In the
first way, again it can be generated in one go or part by part in a generic fashion. A factory class does new
component creations where as builder does part by part (for intricate) while prototype does cloning.

 Object creation
 |
 v
 +-----------------------+
 | |
 v v
 new object cloning(prototype)
 |
 |
 +-----------------------+
 | |
 v v
 one go creation(factory,singleton) part wise creation(builder)

Factory
Factory involves creating or generating new objects through methods. The method gives the concept of a
factory which creates objects when provided, the id or name of the class. A soap factory creates soap. This is
an object factory which creates objects. This method can be in product abstract class itself (factory method)
or there can be an explicit factory class with method responsible for object creation (abstract factory).

Factory Method

Factory method creates an object through another method. These methods generally are available in libraries
and calling methods in the library providing the objects. These methods can be thought as an interface in
the library providing the objects. Factory methods can exist in the product abstract (interface) classes and
passing class names, it can generate objects for implementation derived classes or Factory methods would be
available with dedicated factory classes where one class is responsible for creating one particular product.

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

46

 +----------------+
 Static. . . | shape |
 factory \ +----------------+
 method > |createshape(name|
 | :string):shape|
 |draw():void |
 |enable():void |
 +----------------+
 / \
 -
 |<<extends>>
 --
 | | |
 +-------------+ +-------------+ +-------------+
 | button | | menu | | combobox |
 +-------------+ +-------------+ +-------------+
 |draw():void | |draw():void | |draw():void |
 |enable():void| |enable():void| |enable():void|
 +-------------+ +-------------+ +-------------+

Code Example
 package shape;
 use button;
 use menu;
 use combobox;
 sub createshape {
 my ($class,$string)=@_;
 my $shape=undef;
 if($string eq “menu”) {
 $shape = “menu”;
 }
 if($string eq “button”) {
 $shape = “button”;
 }
 if($string eq “combo”) {
 $shape = “combobox”;
 }
 bless {}, $shape;
 }
 sub draw {
 print “shape::draw\n”;
 }
 sub enable {
 print “shape::enable\n”;
 }
 1;
 <shape.pm>

 package button;
 use base qw(shape);
 sub draw {
 print “button:draw\n”;
 }
 sub enable {
 print “button::enable\n”;
 }
 1;
 <button.pm>

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

47

 package menu;
 use base qw(shape);
 sub draw {
 print “menu::draw\n”;
 }
 sub enable {
 print “menu::enable\n”;
 }
 1;
 <menu.pm>

 package combobox;
 use base qw(shape);
 sub draw {
 print “combobox::draw\n”;
 }
 sub enable {
 print “combobox::enable\n”;
 }
 1;
 <combobox.pm>

 use strict;
 use warnings;
 use shape;
 shape->createshape(“menu”)->draw;
 shape->createshape(“button”)->draw;
 shape->createshape(“combo”)->draw;
 <main.pl>

 ---data---
 menu::draw
 button:draw
 combobox::draw

Class Approach
 <<interface>>
 +--------------+ +-----------+
 | factory | product class->| mammal |
 +--------------+ +...........+
 > |createmammal()| |run():void |
 factory / | :mammal| |swim():void|
 method ../ +--------------+ |fly():void |
 / \ +-----------+
 – / \
 <<extends>>| –
 --------------------------------------- |
 | | | |<<extends>>
 +--------------+ +--------------+ +--------------+ |
 |animalfactory | | humanfactory | | birdfactory | |
 +--------------+ +--------------+ +--------------+ |
 |createmammal()| |createmammal()| |createmammal()| |
 | :mammal| | :mammal | | :mammal| |
 +--------------+ +--------------+ +--------------+ |
 | | | |
 -----(---------------)---------------

THE LATEST INNOVTIVE METHODS IN PROGRAMMING

48

 | | – - – \ | – - – - – \ |
 <<uses>> | v | v |
 | +------------+ +-----------+ +-----------+
 | animal | | human | | bird |
 +- – - – > +------------+ +-----------+ +-----------+
 |run():void | |run():void | |run():void |
 |swim():void | |swim():void| |swim():void|
 |fly():void | |fly():void | |fly():void |
 +------------+ +-----------+ +-----------+
 factory class approach

Abstract Factory

Abstract factory is similar to the factory class approach in factory method. Here, the product is supported on
various platforms. It is a kind of two dimensional, set of products and each product on set of platforms. So
as obvious, various platforms are the end objects to be created so factory would be one for each platform
where factory methods will be for each product. When product and platform create orthogonal co-ordinates,
factory classes and their Factory methods would be the same. Here the factory is known as Abstract as
concrete, factories are platform specific.

 f p | x x x
 a r |
 c.o |
 d | x x x < . . . every product is supported on
 m u | each platform
 e c |
 t t | x x x
 h ^ |
 ^ . |
 . . |
 . . --------------------------------
 > platform
            `````````> platform factory

                                                        --------
                            ----------------------------|client|
      +---------------+     |                           --------
      |abstractfactory|<-----                              |
      +---------------+                   |---------------------|
      |createButton():|                   v                     v
      |       :button |              +-----------+       +-----------+
      |createmenu():  |              |  button   |       |   menu    |
      |           menu|              +-----------+       +-----------+
      +---------------+              |draw():void|       |draw():void|
             / \                     +-----------+       +-----------+
              –                           / \                 / \
   <<extends>>|                            –                   –   
 ---------------------------               |                   |
 |                         |               |                   |
 +--------------+  +--------------+        |                   |
 |windowsfactory|  | unixfactory  |        |                   |
 +--------------+  +--------------+        |                   |
 |createbutton()|  |createbutton()|     <<extends>>        <<extends>>
:button		:button		
createmenu():		createmenu():		
menu		menu		
+--------------+  +--------------+				
\				



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

49

 |            ------------------)-----------   ---------------------------
 <<uses>>     |                   \- – - – |- -|- – -<<uses>> – - \      |
 |            |                    v       |   |                   v     |
 |     +-------------+         -------------   +-----------+ +-----------+
 |     |windowsbutton|         |unixbutton |   |windowsmenu| | unixmenu  |
 |     +-------------+         +-----------+   +-----------+ +-----------+
 |     |draw():void  |         |draw():void|   |draw():void| |draw():void|
 |     +-------------+         +-----------+   +-----------+ +-----------+
 |          ^                                        ^
 |          |                                        |
 -----------------------------------------------------

Code Example
    package abstractfactory;
    sub new {
    my $class=shift;
    bless {},$class;
    }
    sub createmenu {
    print “abstractFactory::createmenu\n”;
    }
    sub createbutton {
    print “abstractfactory::createbutton\n”;
    }	
    1;
    <abstractfactory.pm>

    package windowsfactory;
    use base qw(abstractfactory);
    use windowsmenu;
    use windowsbutton;
    sub createmenu {
    windowsmenu->new;
    }
    sub createbutton {
    windowsbutton->new;
    }
    1;
    <windowsfactory.pm>

    package unixfactory;
    use base qw(abstractfactory);
    use unixmenu;
    use unixbutton;
    sub createmenu {
    unixmenu->new;
    }
    sub createbutton {
    unixbutton->new;
    }
    1;
    <unixfactory.pm>

    package menu;
    sub new {
    my $class=shift;
    bless {},$class;
    }



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

50

    1;
    <menu.pm>

    package button;
    sub new {
    my $class=shift;
    bless {},$class;
    }
    sub draw {
    print “button::draw\n”;
    }
    1;
    <button.pm>

    package windowsmenu;
    use base qw(menu);
    sub draw {
    print “windowsmenu::draw\n”;
    }
    1;
    <windowsmenu.pm>

    package unixmenu;
    use base qw(menu);
    sub draw {
    print “unixmenu::draw\n”;
    }
    1;
    <unixmenu.pm>

    package windowsbutton;
    use base qw(button);
    sub draw {
    print “windowsbutton::draw\n”;
    }
    1;
    <windowsbutton.pm>

    package unixbutton;
    use base qw(button);
    sub draw {
    print “unixbutton::draw\n”;
    }
    1;
    <unixbutton.pm>

    use strict;
    use warnings;
    use windowsfactory;
    use unixfactory;    
    my $windowsfactoryref= new windowsfactory;
    my $unixfactoryref= new unixfactory;
    $windowsfactoryref->createmenu->draw;
    $windowsfactoryref->createbutton->draw;
    $unixfactoryref->createmenu->draw;
    $unixfactoryref->createbutton->draw;
    <main.pl>

 ---data---



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

51

 windowsmenu::draw
 windowsbutton::draw
 unixmenu::draw
 unixbutton::draw
 ----------

Singleton

As the name suggests, when only a single object of a class is created, the pattern we use to achieve this, is 
the singleton pattern. If the object creation function is used more than once, the already created object is 
returned, i.e. Someone needs to draw many coffee mugs and all to look equal but different in positions on the 
screen. So one object is enough as far as it looks concerned. Position can be adjusted externally.  
Here, factory would create a singleton object, in a province where the king can be one. All scalls to get the 
king would return the same king.

Code Example
    use strict;
    use warnings;
    package singleton;
    my $instance=undef;
    sub new {
    my $class=shift;
    if(!defined $instance) {
    $instance={};
    bless $instance, $class;
    } else {
    return $instance;
    }
    }
    package main;
    print singleton->new, singleton->new, singleton->new;
    <main.pl>

 ---data---
 singleton=HASH(0x3e712c)singleton=HASH(0x3e712c)singleton=HASH(0x3e712c)
 ----------

Builder Pattern

As the name suggests, the builder pattern is used when an entity (builder) creates a complex object part 
(predefined). Builder pattern exposes various methods in creating complex structures and it is the director 
who calls these methods and once the structure is ready, builder returns to the director. I.e in Indian 
restaurants, there can be food items to build, suach as Masala Dosa, Samosa, Aaloo Paratha. These items 
build through three different builders and these builders follow the same steps, a) Making dough b) Putting 
potato c) Baking it. Now, waiter who receives the order calls these three steps of builder without actually 
knowing the details. Once food item is ready, waiter returns the item to the customer. 

                                       . . . . . . . . . . . . . . ..
                                       .                            .
        +-----------------+            .  +----------------+        .
        |waiter(director) | . . . . . ..  |builder         |        .
        +-----------------+               +----------------+     <<uses>>
        |                 | ------------> |prodct:product  |        .
        |                 |    <<uses>>   +----------------+        .
        |construct(builder|               |makedough():void|        .
        |   :builder):void|               |putpotato():void|<>---   .
        |getproduct():    |               |bakeit():void   |    |   .
        |          product|               |getproduct():   |    |   .
        +-----------------+               |        prodduct|    |   .



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

52

                                          +----------------+    |   .
                                                  / \           |   .
                                                   –            |   .
                                        <<extends>>|  <<aggregates>>.
         -------------------------------------------            |   .
         |                |                        |            v   V
  +-------------+  +-------------+   +-----------------+ +---------------+
  |dosabuilder  |  |samosabuilder|   |aalooprathabuiler| |   product     |
  +-------------+  +-------------+   +-----------------+ +---------------+
makedough():		makedough():		makedough():void		setdough(type:
void		void		putpotato():void		string):void
putpotato():		putpotato():		bakeit():void		setpotator(type
void		void	+-----------------+	:string)void		
bakeit():void		bakeit():void		setbaketype(typ		
  +-------------+  +-------------+                       | e:string):void|
                                                         +---------------+

Code Example
    package director;
    sub new {
    my $class=shift;
    bless {},$class;
    }
    sub construct {
    my ($ref, $builder)=@_;
    $builder->makedough;
    $builder->putaloo;
    $builder->fry;
    }
    1;
    <director.pm>
    
    package masalabuilder;
    use product;
    sub new {
    my $class=shift;
    my $ref={};
    ${$ref}{prodct}=product->new;
    bless $ref, $class;
    }
    sub getResult {
    my $ref=shift;
    $ref->{prodct};
    }
    1;
    <masalabuilder.pm>

    package dosabuilder;
    use base qw(masalabuilder);
    use product;
    sub makedough {
    my $ref=shift;
    $ref->{prodct}->dough(“wet”);
    }
    sub putaloo {
    my $ref=shift;
    $ref->{prodct}->aloo(“fried”);
    }



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

53

    sub fry {
    my $ref=shift;
    $ref->{prodct}->fry(“oil fry”);
    }
    1;
    <dosabuilder.pm>
    
    package samosabuilder;
    use base qw(masalabuilder);
    use product;
    sub makedough {
    my $ref=shift;
    $ref->{prodct}->dough(“dry”);
    }
    sub putaloo {
    my $ref=shift;
    $ref->{prodct}->aloo(“fried”);
    }
    sub fry {
    my $ref=shift;
    $ref->{prodct}->fry(“deep fry”);
    }
    1;
    <samosabuilder.pm>
    
    package product;
    sub new {
    bless {}, “product”;
    }
    sub dough {
    print “dough : “,$_[1],”\n”;
    }
    sub aloo {
    my ($ref, $string)=@_;
    print “aloo : “,$string,”\n”;
    }
    sub fry {
    my ($ref, $string)=@_;
    print “fry : “,$string,”\n”;
    }
    1;
    <product.pm>
    
    use strict;
    use warnings;
    use director;
    use samosabuilder;
    use dosabuilder;
    my $directorref=director->new;
    $directorref->construct(new dosabuilder);
    $directorref->construct(new samosabuilder);
    <main.pl>

 ---data---
 dough : wet
 aloo : fried
 fry : oil fry

 dough : dry



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

54

 aloo : fried
 fry : deep fry

Prototype Pattern

When the cloning of an object is required, this pattern is used and when an object is created, it modifies its 
state and other data structures. When a new object carries the requirement of having a copy of the current state 
of an object, object has to clone itself. Every implementation class overrides abstract class clone function. A 
guru makes shishya (students), those are clones of him. They carry the same knowledge and guru does not lose 
anything.

 --------                     +---------+
 |client| ------------------> |prototype|
 --------                     +---------+
                              |clone():p|
                              | rototype|
                              +---------+
                                  / \
                                   -
                                   |<<extends>>
                 --------------------------------------
                 |                 |                  |
            +---------+        +----------+      +----------+
            | mystack |        |  myqueue |      |   mymap  |
            +---------+        +----------+      +----------+
            |clone():p|        |clone():  |      |clone():  |
            | rototype|        | prototype|      | prototype|
            +---------+        +----------+      +----------+

Code Example
    package dataobject;
    sub new {
    my ($class, $ref)=@_;
    bless $ref,$class;
    }
    1;
    <dataobject.pm>
    
    package mystack;
    use base qw(dataobject);
    sub new {
    my $ref=shift;
    $ref->SUPER::new([@_]);
    }
    sub clone {
    my $ref=shift;
    (ref($ref))->SUPER::new([@$ref]);
    }
    1;
    <mystack.pm>
    
    package myqueue;
    use base qw(dataobject);
    sub new {
    my $class=shift;
    $class->SUPER::new([@_]);
    }
    sub clone {
    my $ref=shift;



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

55

    (ref($ref))->SUPER::new([@$ref]);
    }
    1;
    <myqueue.pm>

    package mymap;
    use base qw(dataobject);
    sub new {
    my $class=shift;
    $class->SUPER::new({@_});
    }
    sub clone {
    my $ref=shift;
    (ref($ref))->SUPER::new({%$ref});
    }
    sub printdata {
    my $ref=shift;
    my ($key, $value) = each %$ref;
    print $key,”=>”,$value;
    while ((($key, $value)=each %$ref) && print “,”, $key,”=>”,$value){};
    }
    1;
    <mymap.pm>
    
    use strict;
    use warnings;
    use dataobject;
    use mystack;
    use myqueue;
    use mymap;
    print “cloned stack data : “,@{mystack->new(1,2,3,4,5)->clone},”\n”;
    print “cloned queue entries : “,@{myqueue->new(‘a’,’b’,’c’,’d’,’e’)->clone},”\n”;
    print “cloned map entries : “;
    mymap->new(“a”,”apple”,”b”,”berry”,”c”,”cherry”)->clone->printdata;
    <main.pl>

 ---data---
 cloned stack data : 12345
 cloned queue entries : abcde
 cloned map entries : c=>cherry,a=>apple,b=>berry
 ----------



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

56

Design Patterns in Perl – Part 2
by Pravin Kumar Sinha

Structural patterns deals with the layout. Layout is the sense of how attributes of the class/
design are distributed and related. This deals with static structure of the design and not how 
the object interacts with each other. There can be many categories that can be distributed 
in. a) When a structure composes a different one. b) When a structure is derived from others 
so that it inherits and extends parent property. c) When a structure, composes other and 
inherits the same. Adapter (object), bridge, facade, flyweight are examples when a structure 
composes a different structure. 

Proxy and adapter (class) are examples when one derives from another. Composite and decorator derive and 
compose the same. Apart from these every structural pattern has a base in one of the creational patterns.  
A structural pattern is based on a specific creational pattern. Similarly, behavioral pattern has a base on structural.

 +---------------------+
 |structural pattern   |
 +---------------------------+
 |creational pattern         |
 +---------------------------+

                                     |----->Adapter(object)
                        composition  |      (factory)
                      |------------->+
                      |              |
                      |              |----->Bridge
                      |              |      (factory)
                      |              |
                      |              |----->Facade
                      |              |      (factory)
                      |              |               
                      |              |----->Flyweight
                      |                     (factory/singleton)
                      |               
                      |               
                      |              |----->Proxy
                      |              |      (factory/builder)
                      | Inheritance  |
 structural pattern-->+------------->+  
                      |              |
                      |              |----->Adapter(class)
                      |                     (factory)
                      |                         
                      |                         
                      |                        |-->Composite
                      |                        |   (factory)
                      | composition+inheritance|
                      |----------------------->+
                                               |
                                               |-->Decorator
                                                   (factory/singleton)



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

57

Composition
Structural patterns work in compositing other structures. First, structure which composes another structure, 
somewhere it delegates the client calls so in order to make use of it. Composed structure is generally 
passed to first one through the client. As this kind of pattern has primary structure and composed structure 
where primary structure delegates, the client calls to compose one, both client and primary structure keep 
the interfaces of next one and mix the code with interface methods. This makes the client and the primary 
structure code close for changes.

 -------- <<uses>> +---------------------+ 
 |client| -------> |primarystrucInterface|<>--                                 
 --------          +---------------------+   |<<delegate calls to>>
                         / \                 |   +----------------------+
                          –                  --->|composedstrucinterface|
                          |                      +----------------------+
                   +--------------+                       / \          
                   |Implementation|                        –         
                   +--------------+                        |         
                                                   +--------------+
                                                   |implementation|
                                                   +--------------+

Adapter

When adoptees interface varies from interface, a client expects this pattern to be used. It changes client supported 
interface to adaptee’s interface and hence make the client use adaptee. An adapter can be of two types. First, 
‘object type’ where adaptee interface is contained in adapter and any subclass of adaptee can be contained in the 
adapter at run Time whereas. The second one, is ‘class type’ where adaptee is also a base class for adapter. When 
a person talks to another one understanding different language, both have to use a multilingual two way adapter 
who let those two people communicate even though they do not understand each others language. Object type: 

                  <<target interface>>
 --------           +---------------+      
 |client| --------> |    memory     |
 --------           +---------------+
                    |fetchvideo(name|
                    |  :string):void| 
                    +---------------+
                           / \
                            -
                            |                 <<adaptee interface>>
                    +---------------+           +------------------+
         <<adapter>>| memoryadapter |<>-------> |   cameramemory   |
                    +---------------+           +------------------+
                    |adaptee:cameram|           |setmode(mode:int):|
                    |          emory|           |              void|
                    +---------------+           |getfile(file:strin|
                    |fetchvideo(name|           |            g:void|
                    |  :string):void|           +------------------+
                    +---------------+                    / \
                                                          -
                                                          |
                                       --------------------------
                                       |               
                             +------------------+
                             |  nickoncameramem |
                             +------------------+
                             |setmode(mode:int):|    . . .
                             |              void|



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

58

                             |getfile(file:strin|
                             |           g):void|
                             +------------------+

Code Example
    package memory;
    sub new {
    my ($class, $adaptee)=@_;
    bless {adaptee=>$adaptee}, $class;
    }
    1;
    <<memory.pm>>
   
    package memoryadapter;
    use base qw(memory);
    sub fetchvideo {
    my ($ref, $videoname)=@_;
    $ref->{adaptee}->setmode(1);#read mode
    $ref->{adaptee}->getfile($videoname);
    }
    1;
    <<memoryadapter.pm>>
   
    package cameramemory;
    sub new {
    my $class=shift;
    bless {}, $class;
    }
    1;
    <<cameramemory.pm>>
   
    package nickoncameramem;
    use base qw(cameramemory);
    sub setmode {
    my ($ref, $mode)=@_;
    $ref->{MODE}=$mode;
    if($ref->{MODE}) {
    print “nickoncameramem::CHANGED TO READ MODE\n”;
    } else {
    print “nickoncameramem::CHANGED TO WRITE MODE\n”;
    }
    }
    sub getfile {
    my ($ref,$file)=@_;
    return “ERROR in MODE\n” if !$ref->{MODE};
    print “nickoncameramem::serving file : “,$file,” :”;
    }
    1;
    <<nickoncameramem.pm>>
   
    use memoryadapter;
    use nickoncameramem;
    memoryadapter->new(new nickoncameramem)->fetchvideo(“earth song”);
    <<main.pl>>
 ---data---
 nickoncameramem::CHANGED TO READ MODE
 nickoncameramem::serving file : earth song :
 ----------



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

59

Bridge Pattern

When an abstract has several implementations and each implementation (say abstract implementation) 
grows again in a number of sub implementations then classes at sub implementation level exists in man 
numbers. Same set of sub implementations is available in each abstract implementation. It is important to 
separate abstract implementation tree with the sub implementation tree. This way abstract implementation 
and its sub implementation can grow independently. In a sub implementation tree we can consider that each 
sub implementation creates a bridge to an abstract implementation. Sub implementation is interfaced to the 
client, whereas abstract implementation is the real implementation which is delegated to four clients call to 
interfaces. For example, there are drawing APIs used across application types. We have all application types 
inherit all drawing APIs. If there are three application type supported and one new drawing API arrives, then 
three more inheritance is required. Better way to avoid that is to separate application hierarchy from drawing 
API hierarchy. Each application implementation will create a bridge to API implementation interface. In 
the country political system, there can be multiple parties and each party has a president, vice president, 
secretary, etc. Now number of party increases and also the posts. A person wants to be secretory in party 
A and another person wants to be president in the same party at. If we have an abstract class Post and then 
for each Post implementation all parties are subclasses then total number of parties classes would be too 
many. Here we can have Posts and Parties separate hierarchy and a person wants to become a Post holder in 
a Party will instantiate the party implementation passing the Post implementation. Like, new party A (new 
secretary). This way he becomes secretary in party A.

 +-------------+                               +--------------------+
 |<<interface>>|                               | <<interface impl>> |
 | application |<>---------------------------> |    drawingapi      |
 +-------------+                               +--------------------+
 |drawingapi:dr|                               |drawcircle():void   |
 |     awingapi|                               |drawrectangle():void|
 +-------------+                               +--------------------+
 |draw():void  |                                        / \ 
 |resize():void|                                         -
 +-------------+                                         |
      / \                                  ---------------------------
       –                                   |                         |
       |                                +-------------+   +-------------+
       ------------------               | drawingapi1 |   |drawingapi2  |
       |                |               +-------------+   +-------------+
 +---------------+ +-----------------+  |drawcircle():|   |drawcircle():|
 |recapplication | |circleapplication|  |         void|   |         void|
 +---------------+ +-----------------+  |drawrectangle|   |drawrectangle|
 |x1,y1,x2,y2:int| |x,y,radius:int   |  |      ():void|   |      ():void|
 +---------------+ +-----------------+  +-------------+   +-------------+
 |draw():void    | |draw():void      |
 |resize():void  | |resize():void    |
 +---------------+ +-----------------+

Code Example
    package application;
    sub new {
    my ($class,$ref)=@_;
    bless $ref,$class;
    }
    1;
    <<application.pm>>
     
    package recapplication;
    use base qw(application);
    sub new {
    my ($class, $x1,$y1,$x2,$y2, $drawingapi)=@_;



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

60

    printf “recapplication::rectangle, x1=>%d, y1=>%d, x2=>%d, y2=>%d\n”,$x1,$y1,$x2,$y2;
    $class->SUPER::new({x1=>$x1,y1=>$y1,x2=>$x2,y2=>$y2,drawingapi=>$drawingapi});
    }
    sub resize {
    my ($ref, $x1,$y1,$x2,$y2)=@_;
    $ref->{drawingapi}->drawrectangle($ref->{x1}=$x1,$ref->{y1}=$y1,$ref->{x2}=$x2,$ref->{y2}=$y2);
    }
    sub draw {
    my ($class, $x1, $y1, $x2, $y2)=@_;
    $ref->{drawingapi}->drawrectangle($ref->{x1},$ref->{y1},$ref->{x2},$ref->{y2});
    }
    1;
    <<recapplication.pm>>
    
    package circleapplication;
    use base qw(application);
    sub new {
    my ($class, $x, $y, $radius, $drawingapi)=@_;
    printf “circleapplication::circle, x=>%d, y=>%d, radius=>%d \n”,$x,$y,$radius;
    $class->SUPER::new({x=>$x,y=>$y,radius=>$radius,drawingapi=>$drawingapi});
    }
    sub resize {
    my ($ref, $x, $y, $radius)=@_;
    $ref->{drawingapi}->drawcircle($ref->{x}=$x, $ref->{y}=$y,$ref->{radius}=$radius);
    }
    sub draw {
    my $ref=shift;
    $ref->{drawingapi}->drawcircle($ref->{x},$ref->{y},$ref->{radius});
    }
    1;
    <<circleapplication.pm>>
   
    package drawingapi {
    sub new {
    bless {}, $class;
    }
    1;
    <<drawingapi.pm>>
    
    package drawingapi1;
    use base qw(drawingapi);
    sub drawrectangle {
    my ($ref, $x1, $y1, $x2, $y2)=@_;
    printf “drawingapi1::drawrectangle, x1=%d, y1=%d, x2=%d, y2=%d\n”,$x1,$y1,$x2,$y2;
    }
    sub drawcircle {
    my ($ref, $x, $y, $radius)=@_;
    printf “drawingapi1::drawcircle, x=>%d, y=>%d, radius=>%d\n”,$x,$y,$radius;
    }
    1;
    <<drawingapi1.pm>>
    
    package drawingapi2;
    use base qw(drawingapi);
    sub drawcircle {
    my ($ref, $x, $y, $radius)=@_;
    printf “drawingapi2::drawcircle, x=%d,y=%d,radius=%d”,$x,$y,$radius;
    }
    sub drawrectangle {



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

61

    my ($ref, $x1, $y1, $x2, $y2)=@_;
    printf “drawingap2::drawrectangle, x1=%d,y1=%d,x2=%d,y2=%d\n”,$x1,$y1,$x2,$y2;
    }
    1;
    <<drawingapi2.pm>>

    use recapplication;
    use circleapplication;
    use drawingapi1;
    use drawingapi2;
    new recapplication(0,0,4,3, new drawingapi1)->resize(1,1,3,3);
    new circleapplication(0,0,4, new drawingapi2)->resize(0,0,3);
    <<main.pl>>
 ---data---
 recapplication::rectangle, x1=>0, y1=>0, x2=>4, y2=>3
 drawingapi1::drawrectangle, x1=1, y1=1, x2=3, y2=3
 circleapplication::circle, x=>0, y=>0, radius=>4
 drawingapi2::drawcircle, x=0,y=0,radius=3
 ----------

Facade

When an extra interface is required for handling complex underlying component facade pattern is used.  
This makes various underlying classes easy to use through facade interface. Facade interface delegates calls 
to underlying implementations. For example, there are many separate components which do some specific 
task. An adder adds two numbers, multiplier multiplies two numbers, divider divides two numbers.  
Still, there is a facade abstract data type calculator which provides an interface for evaluating an expression 
and delegates the expressive parts to separate components. In a province, there are many departments and 
ministers are taking care of each department. It is prime minister, though, who interacts with people for 
Thieu complex issues, though he may not handle any department.

                       ---------         ---------
                       |client1|         |client2|
                       ---------         ---------
                            \               /
 +----------------+          \             /
 |     adder      |<--        \           /
 +----------------+  |         \ <<uses>>/
 |compute(expressi|  |          \       /
 | on:string):void|  |           v     v
 +----------------+  |     +---------------------+
                     +---<>|   calculator        |<>-  +----------------+
 +----------------+  |     +---------------------+  |  |    Divider     |
 |   subtracter   |<--     |DIVIDER:divider      |  |  +----------------+
 +----------------+        |MULTIPLIER:multiplier|  |  |compute(expressi|
 |compute(expressi|        |ADDER:adder          |  |  | on:string):void|
 | on:string):void|        |SUBTRACTER:subtracter|  |  +----------------+
 +----------------+        +---------------------+  |          ^
                           |compute(expression:st|  |          |
                           |           ring):void|  ----+-------
                           +---------------------+      |
                                                        |
                                                    <<aggregates>>
                                                        |
                           +------------------+         |
                           |   multiplier     |         |
                           +------------------+<---------
                           |compute(expression|
                           |     :string):void|
                           +------------------+



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

62

Code Example
    package calculator;
    use subtracter;
    use adder;
    use multiplier;
    use divider;
    sub new {
    my $class=shift;
    bless {SUBTRACTER=>new subtracter,ADDER=>new adder,MULTIPLIER=>new multiplier,DIVIDER=>new 
divider}, $class;
    }
    sub compute {
    my ($ref, $expressionstring)=@_;
    my ($operand1, $operand2);
    if ($expressionstring=~/(.+)\+(.*)/) {
    $operand1=$1;
    $operand2=$2;
    $ref->{ADDER}->compute($ref->compute($operand1),$ref->compute($operand2));
    } elsif ($expressionstring=~/(.+)\-(.*)/) {
    $operand1=$1;
    $operand2=$2;
    $ref->{SUBTRACTER}->compute($ref->compute($operand1),$ref->compute($operand2));
    } elsif ($expressionstring=~/(.+)\*(.*)/) {
    $operand1=$1;
    $operand2=$2;
    $ref->{MULTIPLIER}->compute($ref->compute($operand1),$ref->compute($operand2));
    } elsif ($expressionstring=~/(.+)\/(.*)/) {
    $operand1=$1;
    $operand2=$2;
    $ref->{DIVIDER}->compute($ref->compute($operand1),$ref->compute($operand2));
    } else {
    $expressionstring=~s/[ ]*([0-9]+)[ ]*/\1/;
    $expressionstring;
    }
    }
    1;
    <<calculator.pm>>
    
    package operator;
    sub new {
    my $class=shift;
    bless {}, $class;
    }
    1;
    <<operator.pm>>
    
    package adder;
    use base qw(operator);
    sub compute {
    my ($ref, $operand1, $operand2)=@_;
    printf “adder::compute operand1=>%d, operand2=>%d \n”,$operand1, $operand2;
    eval($operand1 + $operand2);
    }
    1;
    <<adder.pm>>
    
    package subtracter;



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

63

    use base qw(operator);
    sub compute {
    my ($ref, $operand1, $operand2)=@_;
    printf “subtracter::compute operand1=>%d, operand2=>%d\n”,$operand1, $operand2;
    eval($operand1 – $operand2);
    }
    1;
    <<subtracter.pm>>
    
    package multiplier;
    use base qw(operator);
    sub compute {
    my ($ref, $operand1, $operand2)=@_;
    printf “multiplier::compute operand1=>%d, operand2=>%d\n”,$operand1,$operand2;
    eval($operand1 * $operand2);
    }
    1;
    <<multiplier.pm>>
    
    package divider;
    use base qw(operator);
    sub compute {
    my ($ref, $operand1, $operand2)=@_;
    print “divider::compute operand1=>”,$operand1,” operand2=>”,$operand2,”\n”;
    eval($operand1 / $operand2);
    }
    1;
    <<divider.pm>>
    
    use strict;
    use warnings;
    use calculator;
    my $calculatorref=new calculator;
    print “evaluation context : “, q(1-2+4*3-6/2+8*3-2*70/10),”\n”;
    my $result=$calculatorref->compute(q(1-2+4*3-6/2+8*3-2*70/10));
    print “result : “,$result;
    <<main.pl>>
 ---data---
 evaluation context : 1-2+4*3-6/2+8*3-2*70/10
 subtracter::compute operand1=>1, operand2=>2
 multiplier::compute operand1=>4, operand2=>3
 divider::compute operand1=>6 operand2=>2
 subtracter::compute operand1=>12, operand2=>3
 multiplier::compute operand1=>8, operand2=>3
 divider::compute operand1=>70 operand2=>10
 multiplier::compute operand1=>2, operand2=>7
 subtracter::compute operand1=>24, operand2=>14
 adder::compute operand1=>9, operand2=>10
 adder::compute operand1=>-1, operand2=>19
 result : 18
 ----------

Flyweight

When a class requires multiple instantiation and all have most of the properties same and few of them differs 
then its clever to instantiate only one object where as while rendering not in common properties among them 
would be provided externally. This kind of situation flyweight pattern is used. Objects common property is 
maintained only once in memory where as, properties different for each instantiation, passed from outside. 
The common intrinsic property saves a memory, whereas extrinsic property is passed only when required. 



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

64

For example, in a housing colony map there are many houses in the map spread across various sectors and 
plots but houses would be in certain types only. Type A, type B, type C and type D (say). Each type has 
similar look and feel so the graphic data structure needs to be created only once for each type where same 
graphic would be shown in many places in the map and they only vary in space coordinates. Here houses 
types are intrinsic characteristics, whereas house location is extrinsic characteristics. An army officer does 
not know about each of solder individually rather than he knows about different types of soldier groups 
(battalions) with different attires. Army officer just thinks about deploying a soldier groups to various places 
in war.

 --------          +---------------+
 |client| -------> | housefactory  | <<aggregates>>  +----------------+
 --------          +---------------+<>-------------> |  housetype     |
                   |gethouse(type:s|                 +----------------+
                   |   tring):house|   intrinsic...> |type:string     |
                   -----------------                 +----------------+
                                                     |gethousetype():s|
         +---------------+        -------------------|           tring|
         |locationcontext|        |   <<uses>>       +----------------+
         +---------------+        | <<extrinsic>>           / \ 
         |sector:int     | <------                           -
         |plot:int       |                                   |
         +---------------+                          +--------------+
         |getlocation():i|                          |   house      |
         |             nt|                          +--------------+
         +---------------+                          |gethousetype()|
                                                    |       :string|
                                                    |build():void  |
                                                    +--------------+

Code Example
    package housetype;
    sub new {
    my ($class, $type)=@_;
    bless {type=>$type},$class;
    }
    sub gethousetype {
    my $ref=shift;
    $ref->{type};
    }
    1;
    <<housetype.pm>>

    package house;
    use base qw(housetype);
    sub build {
    my ($ref, $locationcontext)=@_;
    print “house with type : “, $ref->gethousetype, “ constructed at “, $locationcontext-
>get,”\n”;
    }
    1;
    <<house.pm>>

    package locationcontext;
    sub new {
    my ($class, $sector, $plot)=@_;
    bless {sector=>$sector, plot=>$plot}, $class;
    }
    sub get {



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

65

    my $ref=shift;
    qq(sector number : $ref->{sector}, plot number : $ref->{plot});
    }
    1;
    <<locationcontext.pm>>

    package housefactory;
    use house;
    sub new {
    my $class=shift;
    bless {},$class;
    }
    sub gethouse {
    my ($ref, $type)=@_;
    return $ref->{$type} if exists $ref->{$type};
    $ref->{$type}=new house($type);
    }
    1;
    <<housefactory.pm>>

    use strict;
    use warnings;
    use housefactory;
    use locationcontext;
    
    my $housefactoryref=new housefactory;
    $housefactoryref->gethouse(‘A’)->build(new locationcontext(10, 1));
    $housefactoryref->gethouse(‘B’)->build(new locationcontext(10, 2));
    $housefactoryref->gethouse(‘A’)->build(new locationcontext(10, 3));
    $housefactoryref->gethouse(‘A’)->build(new locationcontext(10, 4));
    $housefactoryref->gethouse(‘B’)->build(new locationcontext(10, 5));
    $housefactoryref->gethouse(‘B’)->build(new locationcontext(10, 7));
    $housefactoryref->gethouse(‘C’)->build(new locationcontext(11, 1));
    $housefactoryref->gethouse(‘C’)->build(new locationcontext(11, 2));
    $housefactoryref->gethouse(‘C’)->build(new locationcontext(11, 4));
    $housefactoryref->gethouse(‘D’)->build(new locationcontext(11, 5));
    $housefactoryref->gethouse(‘D’)->build(new locationcontext(11, 7));
    <<main.pl>>
 ---data---
 house with type : A constructed at sector number : 10, plot number : 1
 house with type : B constructed at sector number : 10, plot number : 2
 house with type : A constructed at sector number : 10, plot number : 3
 house with type : A constructed at sector number : 10, plot number : 4
 house with type : B constructed at sector number : 10, plot number : 5
 house with type : B constructed at sector number : 10, plot number : 7
 house with type : C constructed at sector number : 11, plot number : 1
 house with type : C constructed at sector number : 11, plot number : 2
 house with type : C constructed at sector number : 11, plot number : 4
 house with type : D constructed at sector number : 11, plot number : 5
 house with type : D constructed at sector number : 11, plot number : 7
 ----------

Inheritance
In this structural pattern classes grow their attributes through inheritance rather than composition.  
This makes attributes, static at run time. It is used when either primary interface and delegate both have same 
interface methods or primary interface implementation derives from delegate implementation, in this case 
delegate method would not extend.



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

66

 --------                             +---------+
 |client| --------------------------> |interface|
 --------                             +---------+
                                          / \
                                           -
                                           |
                          ---------------------------------
                          |                               |
                 +-----------------+              +--------------+
                 |primary interface|<>----------->|implementation|
                 +-----------------+              +--------------+

Proxy

A class which acts as an interface to some other classes is a proxy. There can be a scenario when a target 
class is expensive to duplicate and a virtual class is required to be instantiated to many places, but in turn 
passes the call to target class of service. For example, a database program server requests based on a query. 
It brings database in memory in order to provide the service. Loading database is a costly operation and 
may not be possible at low end machines. So instantiating the database class would load the database. Since 
memory consumption is high, this class typically can be instantiated at high end servers only. Programs 
at other machines need a database service, can not instantiate database class. What is required here is a 
virtual database class that provides an exact same interface as the real database class, but internally keeps 
cached information and serves the client internally and when it is required, it contacts real database program 
instance for the service. For the client programs it is as if they instantiate real database programs (classes) 
only and use the same methods. Every country has an immigration department and some of them provide 
permission to stay in their country when you visit the country itself and they do not place their proxies in 
other countries.

 -----------                    +-----------------+
 |client   |  ----------------> |  <<interface>>  |
 -----------                    |     database    |
                                +-----------------+
                                |addtable(id:int,t|
                                | able:TABLE):void|
                                |gettable(id:int):|
                                |            TABLE|
                                +-----------------+
                                        / \
                                         -
                                         |
    ----------------------------------------------------
    |                                |                 |
 +------------------+    +----------------------+     +-----------------+
 |writedatabaseproxy|<>- |readonlydatabaseproxy |<>-- |  targetdatabase |
 +------------------+  | +----------------------+   | +-----------------+
 |target:database   |  | |target:database       |   | |addtable(id:int,t|
 |cache:tablecache  |  | |cache:tablecache      |   | | able:TABLE):void|
 +------------------+  | +----------------------+   | |gettable(id:int):|
 |addtable(id:int,ta|  | |gettable(id:int):TABLE|   | +-----------------+
 |   ble:TABLE):void|  | |getTablesize(tableid: |   |          ^
gettable(id:int):T			int):int		
ABLE		+----------------------+			
gettablesize(id:in					
t):int	+----------------------------+----------+				
 +------------------+  |            <<aggregates>>
                       |
                       v
           +--------------+
           |tablecache    |
           +--------------+



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

67

           |addtable(id:in|
           |      t):TABLE|
           |gettablesize(i|
           |    d:int):int|
           +--------------+

Code Example
    package database;
    use targetdatabase;
    use tablecache;
    my $targetdatabaseref=undef;
    my $tablecacheref=undef;
    sub gettargetdatabase() {
    if (!defined $targetdatabaseref) {
    $targetdatabaseref=new targetdatabase;
    } else {
    $targetdatabaseref;
    }
    }
    sub gettablecache() {
    if (!defined $tablecacheref) {
    $tablecacheref=new tablecache;
    } else {
    $tablecacheref;
    }
    }
    sub new {
    my $class=shift;
    bless {},$class;
    }
    1;
    <<database.pm>>
    
    package tablecache;
    sub new {
    my $class=shift;
    bless {},$class;
    }
    sub addtable {
    my ($ref, $tableid, $table)=@_;
    $ref->{$tableid}=$table;
    }
    sub gettable {
    my ($ref, $tableid)=@_;
    $ref->{$tableid};
    }
    1;
    <<tablecache.pm>>
    
    package writedatabaseproxy;
    use base qw(database);
    sub new {
    my $class=shift;
    my $ref=$class->SUPER::new;
    $ref->{TARGET}=$class->gettargetdatabase();
    $ref->{CACHE}=$class->gettablecache();
    $ref;
    }



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

68

    sub addtable {
    my ($ref, $tableid, $table)=@_;
    $ref->{TARGET}->addtable($tableid, $table);
    $ref->{CACHE}->addtable($tableid, {SIZE=>scalar @$table,THRESHOLD=>0.8});
    }
    sub gettable {
    my ($ref,$tableid)=@_;
    $ref->{TARGET}->gettable($tableid);
    }
    sub gettablesize {
    my ($ref, $tableid)=@_;
    $ref->{CACHE}->{$tableid}->{SIZE};
    }
    1;
    <<writedatabaseproxy.pm>>
    
    package readonlydatabaseproxy;
    use base qw(database);
    sub new {
    my $class=shift;
    my $ref=$class->SUPER::new;
    $ref->{TARGET}=$class->gettargetdatabase();
    $ref->{CACHE}=$class->gettablecache();
    $ref;
    }
    sub gettable {
    my ($ref, $tableid)=@_;
    $ref->{TARGET}->gettable($tableid);
    }
    sub gettablesize {
    my ($ref, $tableid)=@_;
    $ref->{CACHE}->gettable($tableid)->{SIZE};
    }
    1;
    <<readonlydatabaseproxy.pm>>
    
    package targetdatabase;
    use base qw(database);
    sub addtable {
    my ($ref,$tableid,$table)=@_;
    $ref->{$tableid}=$table;
    }
    sub gettable {
    my ($ref, $tableid)=@_;
    $ref->{$tableid};
    }
    1;
    <<targetdatabase.pm>>
    
    use strict;
    use warnings;
    use writedatabaseproxy;
    use readonlydatabaseproxy;
    my $wrdtbsproxyref=new writedatabaseproxy;
    my $rddtbsproxyref=new readonlydatabaseproxy;
    $wrdtbsproxyref->addtable(“one”,[[1,2,3],[4,5,6],[7,8,9]]);
    $wrdtbsproxyref->addtable(“two”,[[‘a’,’b’,’c’],[‘d’,’e’,’f’],[‘g’,’h’,’i’],[‘j’,’k’,’l’]]);
    print “table size for tableid \”one\” : “,$rddtbsproxyref->gettablesize(“one”),”\n”;
    print “table data for tableid \”one\” :\n”;



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

69

    map {print @{$_}, “\n”} @{$rddtbsproxyref->gettable(“one”)};
    <<main.pl>>
 ---data---
 table size for tableid “one” : 3
 table data for tableid “one” :
 123
 456
 789
 table size for tableid “two” : 4
 table data for tableid “two” :
 abc
 def
 ghi
 jkl
 ----------

Adapter class

Adapter class type serves the same idea as adapter object type. Adapter (and its subclasses) in addition to target 
are also derived from the adaptee. This makes the delegation easy where as sub classing adaptee is not possible.

                         <<target interface>>
 --------                  +--------------+   
 |client|----------------->|   memory     |
 --------                  +--------------+   <<adaptee class impl>>
                           |getvideo(name:|      +---------------+
                           |  string):void|      | cameramemory  |
                           +--------------+      +---------------+
                                 / \             |getfile(name:st|
                                  –              |     ring):void|
                                  |              |setmode(mode:in|
                                  |              |        t):void|
                                  |              +---------------+
                                  <<extends>>            / \
                                  |                       -
                                  |                       |
                                  +-----------------------+
                                  |              
                           +---------------+
                           | memoryadapter |
                           +---------------+
                           |getvideo():void|
                           |getfile():void |
                           |setmode():void |
                           +---------------+
                                  / \
                                   -
                                   |
                         +-------------------+
                         |cameramemoryadapter|
                         +-------------------+
                         |getvideo():void    |
                         |getfile():void     |
                         |setmode():void     |
                         +-------------------+



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

70

Code Example
    package memory;
    sub new {
    my $class=shift;
    bless {},$class;
    }
    sub getvideo {
    my ($ref, $videoname)=@_;
    print “memory::getvideo video name : “,$videoname,”\n”;
    }
    1;
    <<memory.pm>>
    
    package memoryadapter;
    use base qw(memory cameramemory);
    sub getvideo {
    my ($ref, $videoname)=@_;
    print “memoryadapter::getvideo,video name : “,$videoname,”\n”;
    }
    1;
    <<memoryadapter.pm>>
    
    package cameramemoryadapter;
    use base qw(memoryadapter);
    sub new {
    my $class=shift;
    my $ref=$class->SUPER::new;
    $ref->setmode(0);
    $ref;
    }
    sub getvideo {
    my ($ref, $videoname)=@_;
    $ref->setmode(1);
    $ref->getfile($videoname);
    }
    1;
    <<cameramemoryadapter.pm>>
    
    package cameramemory;
    sub new {
    my $ref=shift;
    bless {},$class;
    }
    sub setmode {
    my $ref=shift;
    $ref->{mode}=shift;
    print “cameramemory::setmode, new mode : READ\n” if $ref->{mode};
    }
    sub getfile {
    my $ref=shift;
    if($ref->{mode}) {
    print “cameramemory::getfile, getting file : “,shift;
    }
    }
    1;
    <<cameramemory.pm>>
    



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

71

    use strict;
    use warnings;
    use cameramemoryadapter;
    cameramemoryadapter->new->getvideo(“earth song”);
    <<main.pl>>
 ---data---
 cameramemory::setmode, new mode : READ
 cameramemory::getfile, getting file : earth song
 ----------

Composition+Inheritance
This kind of structural pattern, the structure consists of both inheritance and composition. sub class 
extending the base class also composes the base class. This way subclass provides same interface methods as 
base class and in addition it composes other leaf subclasses extending its attributes.

 --------                      +---------------+
 |client|--------------------> |<<interface>>  |<---
 --------                      |class          |   |
                               +---------------+   |
                                     / \           |
                                      –            |
                                      |            |
                           <<extends>>|            |<<aggregates>>
                               +---------------+   |
                               |sub class      |<>--
                               +---------------+

Composite Pattern

When a complex structure contains other structures, where other structures also provide the same interface 
behavior as complex structure. This situation makes it to composite structural pattern where structure 
extends its attribute through containing similar interface (subclassed from same parent) leaf classes.  
This becomes recursive in nature when complex structural subclasses. For example, a graphic component 
(i.e. Frame) can compose various other graphics (button, checkbox, frame) and out of those composed some 
composite graphic can contain similar objects (button, checkbox, frame). Here, the frame is a composite 
graphic which contains again leaf (button, checkbox) graphic and composite graphic (frame). In an 
arithmetic expression, operators are leaf elements, whereas expression itself is composite element. A code 
example is provided following graphic example.

 ------------                +---------------+
 |client    |--------------->|shape          |<------------+
 ------------                +---------------+             |
                             |draw():void    |             |
                             |add(shpe:shape)|             |
                             |          :void|             |
                             |remove(shpe:sha|             |
                             |        pe:void|             |
                             +---------------+             |
                                   / \                     |
                                    –            <<aggregates>>
                        <<extends>> |                      |
        +-------------------------------------+            |
        |                |                    |            |
 +-----------+     +-----------+     +----------------+    |
 |button     |     |comobobox  |     |frame           |<>---
 +-----------+     +-----------+     +----------------+
 |draw():void|     |draw():void|     |draw():void     |
 +-----------+     +-----------+     |add(shpe:shape):|



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

72

                                     |            void|
                                     |remove(shpe:shap|
                                     |          e:void|
                                     +----------------+

Code Example
    package shape;
    sub new {
    my $class=shift;
    bless [],$class;
    }
    1;
    <<shape.pm>>
    
    package frame;
    use base qw(shape);
    sub new {
    my ($class, $frameid)=@_;
    my $ref=$class->SUPER::new;
    push @$ref, $frameid;
    $ref;
    }
    sub draw {
    my $ref=shift;
    print “---\n”;
    printf “frame::draw, frameid:%s\n”,${$ref}[0];
    foreach my $child(@{$ref}[1..$#{$ref}]) {
    $child->draw();
    }
    print “---\n”;
    }
    sub add {
    my ($ref, @childref)=@_;
    push @$ref, @childref;
    }
    sub remove {
    my ($ref, $childref)=@_;
    delete @$ref[(grep{${$ref}[$_]=~/$childref/} 0..$#{$ref})];
    }
    1;
    <<frame.pm>>
    
    package button;
    use base qw(shape);
    sub new {
    my ($class, $buttonid, $label)=@_;
    my $ref=$class->SUPER::new;
    push @$ref, $buttonid, $label;
    $ref;
    }
    sub draw {
    my $ref=shift;
    printf “button::draw, buttonid:%s, button label:%s\n”,${$ref}[0], ${$ref}[1];
    }
    1;
    <<button.pm>>
    
    package combobox;



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

73

    use base qw(shape);
    sub new {
    my ($class, $comboboxid, @entries)=@_;
    my $ref=$class->SUPER::new;
    push @$ref, $comboboxid, @entries;
    $ref;
    }
    sub draw {
    my $ref=shift;
    printf “combobox::draw, comboboxid:%s, entries:%s\n”,${$ref}[0],join(‘ ‘,@{$ref}
[1..$#{$ref}]);
    }
    1;
    <<combobox.pm>>
    
    use strict;
    use warnings;
    use frame;
    use button;
    use combobox;
    
    my $frametopref=new frame(“top”);
    my ($frameleftref, $framerightref)=(new frame(“left”), new frame(“right”));
    $frameleftref->add(new combobox(“comboleft”, “one”, “two”, “three”), new button(“buttonleft”, 
“OK”));
    $framerightref->add(new combobox(“comboright”, “animal”, “bird”, “reptile”), new 
button(“buttonright”, “OK”));
    $frametopref->add($frameleftref, $framerightref);
    $frametopref->draw();
    <<main.pl>>
 ---data---
 ---
 frame::draw, frameid:top
 ---
 frame::draw, frameid:left
 combobox::draw, comboboxid:comboleft, entries:one two three
 button::draw, buttonid:buttonleft, button label:OK
 ---
 ---
 frame::draw, frameid:right
 combobox::draw, comboboxid:comboright, entries:animal bird reptile
 button::draw, buttonid:buttonright, button label:OK
 ---
 ---
 ---------

Example 2 (arithmetic expression)
 --------                   +--------------+
 |client|-----------------> |<<interface>> |<---------------------+
 --------                   |expression    |                      |
                            +--------------+                      |
                            |compute():void|                      |
                            +--------------+                      |
                                  / \                             |
                                   –                              |
                        <<extends>>|                              |
    -----------------------------------------------------+        |
    |           |             |               |          |        |



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

74

 +---------+   +----------+   +----------+   +---------+ |        |
 |adder    |   |subtracter|   |multiplier|   |divider  | |        |
 +---------+   +----------+   +----------+   +---------+ |        |
 |compute()|   |compute():|   |compute():|   |compute()| |        |
 |    :void|   |      void|   |      void|   |    :void| |        |
 +---------+   +----------+   +----------+   +---------+ |        |
                                                         |        |
                                                         |        |
                                                  +----------+    |
                                                  |expression|<>--+
                                                  +----------+
                                                  |compute():|
                                                  |      void|
                                                  +----------+

Code Example
    package expression;
    sub new {
    my ($class, @ref)=@_;
    bless [@ref], $class;
    }
    sub compute {
    my ($ref, $expression)=@_;
    foreach my $child(@$ref) {
    $expression=$child->compute($expression);
    }
    $expression;
    }
    1;
    <<expression.pm>>
    
    package adder;
    use base qw(expression);
    sub compute {
    my ($ref, $expression)=@_;
    while($expression=~/(.*?)([-]?\d+)[+]([-]?\d+)(.*)/) {
    printf “adder:compute, operand1=>%d, operand2=>%d\n”,$2,$3;
    $expression=join(‘’,$1,eval ($2 + $3), $4);
    }
    $expression;
    }
    1;
    <<adder.pm>>
    
    package subtracter;
    use base qw(expression);
    sub compute {
    my ($ref, $expression)=@_;
    while($expression=~/(.*?)(\d+)[-](\d+)(.*)/) {
    printf “subtracter::compute, operand1=>%d, operand2=>%d\n”,$2,$3;
    $expression=join(‘’,$1,eval ($2 – $3), $4);
    }
    $expression;
    }
    1;
    <<subtracter.pm>>
    
    package multiplier;



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

75

    use base qw(expression);
    sub compute {
    my ($ref, $expression)=@_;
    while($expression=~/(.*?)(\d+)[*](\d+)(.*)/) {
    printf “multiplier::compute, operand1=>%d, operand2=>%d\n”,$2,$3;
    $expression=join(‘’,$1,eval ($2 * $3), $4);
    }
    $expression;
    }
    1;
    <<multiplier.pm>>
    
    package divider;
    use base qw(expression);
    sub compute {
    my ($ref, $expression)=@_;
    while($expression=~/(.*?)(\d+)\/(\d+)(.*)/) {
    printf “divider:compute, operand1=>%d, operand2=>%d\n”,$2,$3;
    $expression=join(‘’,$1,eval ($2 / $3), $4);
    }
    $expression;
    }
    1;
    <<divider.pm>>
    
    use strict;
    use warnings;
    use expression;
    use adder;
    use subtracter;
    use divider;
    use multiplier;
    
    my $expressionref=new expression(new divider, new expression(new multiplier, new 
expression(new subtracter, new expression(new adder))));
    printf “evaluation expression:%s\n”,q(1+3/3*2-2+6/2/3-2);
    my $result=$expressionref->compute(‘1+3/3*2-2+6/2/3-2’);
    printf “result:%d\n”,$result;
    printf “evaluation expression:%s\n”,q(1-2+4*3-6/2+8*3-2*70/10);
    $result=$expressionref->compute(q(1-2+4*3-6/2+8*3-2*70/10));
    printf “result:%d”,$result;
    <<main.pl>>
 ---data---
 evaluation expression:1+3/3*2-2+6/2/3-2
 divider:compute, operand1=>3, operand2=>3
 divider:compute, operand1=>6, operand2=>2
 divider:compute, operand1=>3, operand2=>3
 multiplier::compute, operand1=>1, operand2=>2
 subtracter::compute, operand1=>2, operand2=>2
 subtracter::compute, operand1=>1, operand2=>2
 adder:compute, operand1=>1, operand2=>0
 adder:compute, operand1=>1, operand2=>-1
 result:0
 evaluation expression:1-2+4*3-6/2+8*3-2*70/10
 divider:compute, operand1=>6, operand2=>2
 divider:compute, operand1=>70, operand2=>10
 multiplier::compute, operand1=>4, operand2=>3
 multiplier::compute, operand1=>8, operand2=>3
 multiplier::compute, operand1=>2, operand2=>7



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

76

 subtracter::compute, operand1=>1, operand2=>2
 subtracter::compute, operand1=>12, operand2=>3
 subtracter::compute, operand1=>24, operand2=>14
 adder:compute, operand1=>-1, operand2=>9
 adder:compute, operand1=>8, operand2=>10
 result:18
 ----------

Decorator

When extending attributes is required at run time, a similar pattern to composite one works. Instead of the leaf 
class, it is the class for which attributes have to be extended and in place of composite, it is decorated classes 
which extend the attributes of the class. A decorator is further subclassed in order to have more attributes in. 
For example, of a leaf class window, a decorator class can be a frame window drawing frame around it, which 
is then subclasses to vertical scrollbar which provides a vertical scroll bar for the frame. A house knows how to 
show itself but, when it gets lawns and swimming pool around it as decorators, it looks elegant.

                         +-----------+
                         |window     |<--------------------------
                         +-----------+                          |
                         |draw():void|                          |
                         +-----------+                          |
                              / \                               |
                               –                                |
                               |                                |
        -------------------------------------------             |
        |                                         |             |
 +-------------+                          +--------------+      |
 |simplewindow|                           |framedecorator|<>----+
 +------------+                           +--------------+
 |draw():void |                                 / \
 +------------+                                  -
                                                 |
                            --------------------------------
                            |                              |
          +----------------------------+    +-----------------------+
          |horizontalscrollbardecorator|    |verticalscrolldecorator|
          +----------------------------+    +-----------------------+
          |draw():void                 |    |draw():void            |
          +----------------------------+    +-----------------------+

Code Example
    package window;
    sub new {
    my $class=shift;
    bless {}, $class;
    }	
    1;
    <<window.pm>>
    
    package simplewindow;
    use base qw(window);
    sub draw {
    print “simplewindow”;
    }
    1;
    <<simplewindow.pm>>
    
    package framedecorator;



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

77

    use base qw(window);
    sub new {
    my ($class, $decoratee)=@_;
    my $ref=$class->SUPER::new;
    $ref->{DECORATEE}=$decoratee;
    $ref;
    }
    sub draw {
    print “frame on :”;
    $ref->{DECORATEE}->draw;
    }
    1;
    <<framedecorator.pm>>
    
    package verticalscrollbardecorator;
    use base qw(framedecorator);
    sub draw {
    print “verticalscrollbar on “;
    $ref->SUPER::draw;
    }
    1;
    <<verticalscrollbardecorator.pm>>
    
    use strict;
    use warnings;
    use window;
    use veriticalscrollbardecorator;
    
    new verticalscrollbardecorator(new framedecorator(new window))->draw;
    <<main.pl>>
 ---data---
 verticalscrollbar on :frame on :simplewindow
 --------

About the Author
xxxxx



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

78

Design Patterns in Perl – Part 3
by Pravin Kumar Sinha

Behavioral design pattern includes patterns which focus on operations (activity) of a class. 
Every class/component is known for operations, it performs, the behavior of its attributes, 
rather than how it is structured or created. 

Like structural pattern which has based on creational pattern, behavioral pattern has based on structural pattern.

 +-------------------+
 |behavioural pattern|
 +------------------------+
 |structural pattern      |
 +-----------------------------+
 |creational pattern           |
 +-----------------------------+

As this pattern focuses on operations carried out by the pattern, it mostly deals with how a class method is 
called or how set of class methods call each other in order to have a different behavior shown.  
For example, if we register a class method to a class and when a method of the class makes a callback 
to that function we call it command pattern. Another type can be when a class method (function) calls a 
recursively, same function of its own type of class object, it is a recursive way of calling the function and 
chain of responsibility is a pattern which matches to this. Behavioral patterns can be distributed in two 
main categories. a) Recursive method calls b) Non recursive method call. Non-recursive calls can be further 
distributed among Bi) direct method calls by) callback methods calls.

                     behavioral pattern
                             |
       ------------------------------------
       |                                  |
 recursive calls                nonrecursive calls
                                          |
                         ----------------------
                         |                    |
               direct method calls     call back calls

Recursive Patterns
As per this pattern type a method calls itself or same method in other subclasses.

Chain of Responsibility

Responsibility to handle a request is passed to objects in a chain till request finds an object which can handle 
it. Further, it is up to the object to stop the message flow or pass it to next object in the chain.  
This sort of pattern is a chain of responsibility. It avoids attaching sender of a request to a particular receiver 
and gives a generic way to get the request handled. This way sender need to worry about first element of the 
chain to which it will pass the request. For example, in the fault handling section when a fault occurs fall can 
either be displayed as standard message, or it can be displayed as an error message, or it can produce sound 
alarm or SMS can be sent to higher officials for immediate actions or it can be any combination of the above 
actions. Rather than taking action from every individual separate entities, there can be separate entity for 
each of the action and when fault happens, it is passed to first entity, in a chain, in order to take the actions. 
Each entity in the chain checks the severity of the fault and decide upon the handling the fault.  
In the second example, arithmetic expression can also be solved through this pattern, code example I followed 
by this example. In another scenario a number can be shuffled. A code example is followed by the arithmetic 
expression example. In a football match goalkeeper passes the ball to the next player without actually knowing 
who will pass the ball in other side goalpost.



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

79

                            +--------------+
      --------              |   handler    | <----+
      |client| -----------> +--------------+      |
      --------              |handlerequest(| -----+
                            | request:reque|
                            | st):void     |
                            +--------------+
                                  / \
                                   -
                                   |
       +-------------------------------------------------------+
       |                  |                      |             |
 +----------------+ +----------------+ +---------------+ +-------------+
 |stdoutcontroller| |strerrcontroller| |soundcontroller| |smscontroller|
 +----------------+ +----------------+ +---------------+ +-------------+
handlerequest(r		handlerequest(r		handlerequest(		handlereques
equest:int):vo		equest:int):vo		request:int):		t(request:i
id		id		void		in):void
 +----------------+ +----------------+ +---------------+ +-------------+

Code Example
    package handler;
    sub new {
    my ($class,$level)=@_;
    bless {LEVEL=>$level}, $class;
    }
    sub next {
    my $ref=shift;
    if(scalar @_) {
    $ref->{NEXT}=shift;
    }
    $ref->{NEXT};
    }
    sub handlerequest {
    my ($ref,$request,$level)=@_;
    if($level>=$ref->{LEVEL}) {
    $ref->handlerequestimp($request);
    $ref->next->handlerequest($request,$level) if defined $ref->next;
    }
    }
    1;
    <<handler.pm>>
    
    package stdoutcontroller;
    use base qw(handler);
    sub handlerequestimp {
    my ($ref,$request)=@_;
    print “stdoutcontroller request:”,$request,”\n”;
    }
    1;
    <<stdoutcontroller.pm>>
    
    package stderrcontroller;
    use base qw(handler);
    sub handlerequestimp {
    my ($ref,$request)=@_;
    print “stderrcontroller request:”,$request,”\n”;
    }



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

80

    1;
    <<stderrcontroller.pm>>
    
    package soundcontroller;
    use base qw(handler);
    sub handlerequestimp {
    my ($ref, $request)=@_;
    printf “soundcontroller request:%s\n”,$request;
    }
    1;
    <<soundcontroller.pm>>
    
    package smscontroller;
    use base qw(handler);
    sub handlerequestimp {
    my ($ref, $request)=@_;
    printf “smscontroller request:%s\n”,$request;
    }
    1;
    <<smscontroller.pm>>
    
    use strict;
    use warnings;
    use stdoutcontroller;
    use stderrcontroller;
    use soundcontroller;
    use smscontroller;
    (my $handlerref=new stdoutcontroller(1))->next(new stderrcontroller(2))->next(new 
soundcontroller(3))->next(new smscontroller(4))->next(undef);
    $handlerref->handlerequest(“warning alert”,1);
    $handlerref->handlerequest(“error alert”,2);
    $handlerref->handlerequest(“major fault”,3);
    $handlerref->handlerequest(“critical fault”,4);
    <<main.pl>>

 ---data---
 stdoutcontroller request:warning alert
 stdoutcontroller request:error alert
 stderrcontroller request:error alert
 stdoutcontroller request:major fault
 stderrcontroller request:major fault
 soundcontroller request:major fault
 stdoutcontroller request:critical fault
 stderrcontroller request:critical fault
 soundcontroller request:critical fault
 smscontroller request:critical fault
 ----------

Second example (arithmetic calculation)
 --------                 +--------------+     
 |client| --------------> |   handler    | <---+
 --------                 +--------------+     |
                          |compute(expres| ----+
                          | sion):string |
                          +--------------+
                                / \
                                 -
                                 |



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

81

        +----------------------------------------------+ 
        |               |              |               |
 +-------------+   +-------------+   +-------------+   +-------------+
 |  divider    |   | multiplier  |   | subtracter  |   |    adder    |
 +-------------+   +-------------+   +-------------+   +-------------+
compute(expre		compute(expre		compute(expre		compute(expre
ssion:string		ssion:string		ssion:string		ssion:string
:void		):void		):void		):void
 +-------------+   +-------------+   +-------------+   +-------------+

Code Example
    package handler;
    sub new {
    my ($class,$operator)=@_;
    bless {OPERATOR=>$operator}, $class;
    }
    sub next {
    my $ref=shift;
    if (scalar @_) {
    $ref->{NEXT}=shift;
    }
    $ref->{NEXT};
    }
    sub handle {
    my ($ref,$expression)=@_;
    print “expression:”,$expression,”\n”;
    while($expression=~/(.*?)([-]?\d+)[$ref->{OPERATOR}]([-]?\d+)(.*)/) {
    $expression=join(“”,$1,eval qq($2 $ref->{OPERATOR} $3), $4);
    }
    if(defined $ref->next) {
    $ref->next->handle($expression);
    } else {
    $expression;
    }
    }
    1;
    <<handler.pm>>
    
    package divider;
    use base qw(handler);
    1;
    <<divider.pm>>
    
    package multiplier;
    use base qw(handler);
    1;
    <<multiplier.pm>>
    
    package subtracter;
    use base qw(handler);
    1;
    <<subtracter.pm>>
    
    package adder;
    use base qw(handler);
    1;
    <<adder.pm>>



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

82

    
    use strict;
    use warnings;
    use divider;
    use multiplier;
    use subtracter;
    use adder;
    
    (my $handlerref=new divider(q(/)))->next(new multiplier(q(*)))->next(new subtracter(q(-)))-
>next(new adder(q(+)))->next(undef);
    print “result:”,$handlerref->handle(q(1+3/3*2-2+6/2/3-2)),”\n”;
    print “result:”,$handlerref->handle(q(1-2+4*3-6/2+8*3-2*70/10));
    <<main.pl>>

 ---data---
 expression:1+3/3*2-2+6/2/3-2
 expression:1+1*2-2+1-2
 expression:1+2-2+1-2
 expression:1+0+-1
 result:0
 expression:1-2+4*3-6/2+8*3-2*70/10
 expression:1-2+4*3-3+8*3-2*7
 expression:1-2+12-3+24-14
 expression:-1+9+10
 result:18
 ----------

Reshuffling number:

 --------                    +------------+ 
 |client| -----------------> |   handler  | <---+
 --------                    +------------+     |
                             |handle(numbe|     |
                             | rref:int*):| ----+
                             | void       |
                             +------------+
                                   / \
                                    -
                                    |
                  +-------------------------------+
                  |                               |
          +--------------+                +--------------+  
          |   printer    |                |  forwarder   |
          +--------------+                +--------------+
          |handle(numberr|                |handle(numberr|
          | ef:int*):void|                | ef:int*):void|
          +--------------+                +--------------+

Code Example
    package handler;
    sub next {
    my $ref=shift;
    if(!defined $ref->{NEXT}) {
    $ref->{NEXT}=(ref $ref)->new($ref->{POSITION}+1);
    }
    $ref->{NEXT};
    }
    sub new {



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

83

    my $class=shift;
    (scalar @_?bless {POSITION=>shift},$class:bless {POSITION=>1},$class);
    }
    1;
    <<handler.pm>>
    
    package digitelement;
    use base qw(handler);
    sub handle {
    my ($ref,$tempref)=@_;
    my $numberref=(ref $tempref?$tempref:\$tempref);
    my ($startpos,$diffpos,$one,$two);
    print “${$numberref}\n” if $ref->{POSITION} eq length($$numberref);
    my $pos=$ref->{POSITION};
    while($ref->{POSITION}<length($$numberref)&&$pos<=length($$numberref)){
    $ref->next->handle($numberref);
    do {
    $startpos=$ref->{POSITION}-1;
    $diffpos=++$pos-$ref->{POSITION};
    $$numberref=~/.{$startpos}(.{$diffpos})(.)?/;
    ($one,$two)=($1,$2);
    }while defined --$diffpos && $one=~/.+/ && $two=~/.+/ && $one=~/$two/;
    $$numberref=~s/(.{$startpos})(.)(.{$diffpos})(.)/\1\4\3\2/ if $pos<=length($$numberref);
    }
    $pos=$ref->{POSITION};
    while($pos<length($$numberref)) {
    $startpos=$pos++-1;
    $$numberref=~s/(.{$startpos})(.)(.)/\1\3\2/;
    }
    }
    1;
    <<digitelement.pm>>
    
    use strict;
    use warnings;
    use digitelement;
    new digitelement->handle(q(aad));
    new digitelement->handle(q(1112411));
    <<main.pl>>

 ---data---
 aad
 ada
 daa
 1112411
 1112141
 1112114
 1114211
 .
 .
 2111411
 2114111
 .
 .
 4111211
 4112111
 4121111
 4211111
 ----------



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

84

Interpreter

In a language when representation of grammar is required along with an interpreter in order to decode 
sentences in language according to the grammar interpreter pattern is used. For example, in a language, there 
is the grammar / rules of Rahul AND (Abdul OR (Ravi OR John) AND sally. This grammar/rule says Rahul 
and sally and any of Abdul or rave or John. In case of a context, this grammar will be used by the interpreter 
in order to evaluate the context. When we hear a new word we interpret it through the dictionary.

 ---------                     -------------       ---------
 |context| ----------------->  |interpreter| ----> |grammar|
 ---------                     -------------       ---------

An interpreter makes reference to grammar in order to evaluate context.

Every religion has a grammar book.

              ---------                       ------------
              |client | --------------------> | context  |
              ---------                       ------------
                 |
                 |                           +------------+
                 +-------------------------> | expression | <----------+
                                             +------------+            |
                                             | interpret(c|            |
                                             |  ontext:str|            |
                                             |  ing):void |            |
                                             +------------+            |
                                                   / \                 |
                                                    –                  |
                                                    |                  |
            +-------------------------------------------+              |
            |                    |                      |              |
            +------------------+ +----------------+ +----------------+ |
            |terminalexpression| |  ORexpression  | | ANDexpression  | |
            +------------------+ +----------------+ +----------------+ |
            | literal:string   | | context:string | | context:string | |
            +------------------+ +----------------+ +----------------+ |
            | interpret():void | |interpret():void| |interpret():void| |
            +------------------+ +--------.-------+ +---------.------+ |
                                         / \                 / \       |
                                         \ /                 \ /       |
                                          –                   –        |
                                          |                   |        |
                                          +-------------------+--------+

Code Example
    package expression;
    sub new {
    my ($class,$ref)=@_;
    bless $ref,$class;
    }
    1;
    <<expression.pm>>
    
    package terminalexpression;
    use base qw(expression);
    sub new {
    my ($class,$literal)=@_;



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

85

    my $ref=$class->SUPER::new({LITERAL=>$literal});
    $ref;
    }
    sub interpret {
    my ($ref,$context)=@_;
    (scalar (grep {/$ref->{LITERAL}/} split(/(or)|(and)/i,$context))?1:0);
    }
    1;
    <<terminalexpressio.pm>>
    
    package orexpression;
    use base qw(expression);
    sub new {
    my ($class,$expression1,$expression2)=@_;
    my $ref=$class->SUPER::new({EXPRESSION1=>$expression1,EXPRESSION2=>$expression2});
    $ref;
    }
    sub interpret {
    my ($ref,$context)=@_;
    $ref->{EXPRESSION1}->interpret($context) || $ref->{EXPRESSION2}->interpret($context);
    }
    1;
    <<orexpression.pm>>
    
    package andexpression;
    use base qw(expression);
    sub new {
    my ($class,$expression1,$expression2)=@_;
    my $ref=$class->SUPER::new({EXPRESSION1=>$expression1,EXPRESSION2=>$expression2});
    $ref;
    }
    sub interpret {
    my ($ref,$context)=@_;
    $ref->{EXPRESSION1}->interpret($context) && $ref->{EXPRESSION2}->interpret($context);
    }
    1;
    <<andexpression.pm>>
    
    use strict;
    use warnings;
    use terminalexpression;
    use orexpression;
    use andexpression;
    
    my $expressionref=new andexpression(new terminalexpression(‘RAHUL’),new orexpression(new 
terminalexpression(‘ABDUL’),new andexpression(new orexpression(new terminalexpression(‘RAVI’),new 
terminalexpression(‘JOHN’)),new terminalexpression(‘UDONG’))));
    print “grammar:RAHUL AND (ABDUL OR ((RAVI OR JOHN) AND UDONG))\n”;
    print “interpreting ‘JOHN AND UDONG AND RAHUL’:”,$expressionref->interpret(‘JOHN AND UDONG 
AND RAHUL’),”\n”;
    print “interpreting ‘RAHUL AND RAVI’:”,$expressionref->interpret(‘RAHUL AND RAVI’);
    <<main.pl>>

 ---data---
 grammar:RAHUL AND (ABDUL OR ((RAVI OR JOHN) AND UDONG))
 interpreting ‘JOHN AND UDONG AND RAHUL’:1
 interpreting ‘RAHUL AND RAVI’:0
 ----------



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

86

Arithmetic expression computation:

 --------                          ---------
 |client|------------------------> |context|
 --------                          ---------
    |
    |                              +--------------+
    +----------------------------> |  expression  | <-----------+
                                   +--------------+             |
                                   | interpret(con|             |
                                   |  text:string)|             |
                                   |  :string     |             |
                                   +--------------+             |
                                         / \                    |
                                          –                     |
                                          |                     |
                    +--------------------------------------+    |
                    |                                      |    |
                    +-----------------+ +------------------+    |
                    |terminalexprssion| |  andexpression   |    |
                    +-----------------+ +------------------+    |
                    | literral:string | | expression:string| <>-+
                    +-----------------+ +------------------+
                    | interpret(contex| | interpret(context|
                    | t:string):string| |  :string):string |
                    +-----------------+ +------------------+

Code Example
    package expression;
    sub new {
    my ($class,$ref)=@_;
    bless $ref,$class;
    }
    1;
    <<expression.pm>>
    
    package andexpression;
    use base qw(expression);
    sub new {
    my ($class,$expression1,$expression2)=@_;
    my $ref=$class->SUPER::new({EXPRESSION1=>$expression1,EXPRESSION2=>$expression2});
    $ref;
    }
    sub interpret {
    my ($ref,$context)=@_;
    print “andexpression::context:”,$context,”\n”;
    ($context=$ref->{EXPRESSION1}->interpret($context)) && ($context=$ref->{EXPRESSION2}-
>interpret($context));
    $context;
    }
    1;
    <<andexpression.pm>>
    
    package terminalexpression;
    use base qw(expression);
    sub new {
    my ($class,$literal)=@_;
    my $ref=$class->SUPER::new({LITERAL=>$literal});



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

87

    $ref;
    }
    sub interpret {
    my ($ref,$context)=@_;
    print “terminalexpression::context:”,$context,”\n”;
    while($context=~/(-?\d+)($ref->{LITERAL})(-?\d+)/) {
    $context=join(‘’,$`,eval “$1$2$3”,$’);
    }
    $context;
    }
    1;
    <<terminalexpression.pm>>
    
    use strict;
    use warnings;
    use terminalexpression;
    use andexpression;
    print “result:”,new andexpression(new andexpression(new terminalexpression(‘/’),new 
terminalexpression(‘\*’)),new andexpression(new terminalexpression(‘-’),new 
terminalexpression(‘\+’)))->interpret(‘1+3/3*2-2+6/2/3-2’),”\n”;
    print “result:”,new andexpression(new andexpression(new terminalexpression(‘/’),new 
terminalexpression(‘\*’)),new andexpression(new terminalexpression(‘-’),new 
terminalexpression(‘\+’)))->interpret(‘1-2+4*3-6/2+8*3-2*70/10’);
    <<main.pl>>

 ---data---
 andexpression::context:1+3/3*2-2+6/2/3-2
 andexpression::context:1+3/3*2-2+6/2/3-2
 terminalexpression::context:1+3/3*2-2+6/2/3-2
 terminalexpression::context:1+1*2-2+1-2
 andexpression::context:1+2-2+1-2
 terminalexpression::context:1+2-2+1-2
 terminalexpression::context:1+0+-1
 result:0
 andexpression::context:1-2+4*3-6/2+8*3-2*70/10
 andexpression::context:1-2+4*3-6/2+8*3-2*70/10
 terminalexpression::context:1-2+4*3-6/2+8*3-2*70/10
 terminalexpression::context:1-2+4*3-3+8*3-2*7
 andexpression::context:1-2+12-3+24-14
 terminalexpression::context:1-2+12-3+24-14
 terminalexpression::context:-1+9+10
 result:18
 ----------

Non Recursive patterns
In this kind of pattern, a method calls other in linear(direct call) fashion or because of they are already 
registered (call back).

Callback Patterns

As per the name callee is already registered with caller and some event triggers callers to callback callee.

Command

When different methods that need to be called in, a generic fashion command pattern is used. Here methods 
get class status and executing class generic method actually calls different class method for which the 
command object represents to. There can be two types of pattern here, a) there is separate command class 
registering the methods of a subject class and executing its (subject class) methods once execute method 



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

88

of command is clicked, b) command class itself subclasses serve different behaviors and program needs to 
mix code with abstract command class execute method and the actual execute will be called in the context 
of subclasses behaviors. Lower level staff in any department is command executes for command received 
through various higher officials.

First approach: Class methods register their methods with the command class and when execute method of 
command class is executed a callback to already registered method is called. For example a robot makes 
many movements front, back, left, right. A function executing these movements needs these operations 
stored in a list so that just executing the list one by one in a similar fashion movement can take place.  
The function does not know about the robot and its particular movements. This can happen when a robot 
action gets registered with a new class called common class and when client executes its execute method, 
through callback robot action take place.

                       +-------------+              +----------+
       --------        |   Invoker   |              | command  |
       |client| -----> +-------------+              +--------------+
       --------        |actions:Queue| -----------> |execute():void|
                       +-------------+              +-----.--------+
                                                         / \
                                                         \ /
                                                          |
                       +-------------+                    |
                       |    robot    | <------------------+
                       +-------------+
                       | front():void|
                       | back():void |
                       | right():void|
                       | left():void |
                       +-------------+

Code Example
    package command;
    sub new {
    my ($class,$ref,$action)=@_;
    bless {OBJREF=>$ref,ACTION=>$action},$class;
    }
    sub execute {
    my $ref=shift;
    $ref->{ACTION}($ref->{OBJREF});
    }
    1;
    <<command.pm>>
    
    package robot;
    sub new {
    my $class=shift;
    bless {},$class;
    }
    sub back {
    print “robot::back\n”;
    }
    sub front {
    print “robot::front\n”;
    }
    sub right {
    print “robot::right\n”;
    }
    sub left {



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

89

    print “robot::left\n”
    }
    1;
    <<robot.pm>>
    
    package invoker;
    sub new {
    my $class=shift;
    bless {},$class;
    }
    sub action {
    my ($ref,$actionlist)=@_;
    print “making actions on robot\n”;
    map{$_->execute}@$actionlist;
    }
    1;
    <<invoker.pm>>
    
    use strict;
    use warnings;
    use invoker;
    use robot;
    use command;
    my $robotref=new robot;
    new invoker->action([new command($robotref,\&robot::left),new command($robotref,\&robot::righ
t),new command($robotref,\&robot::front),new command($robotref,\&robot::back)]);
    <<main.pl>>
 ---data---
 making actions on robot
 robot::left
 robot::right
 robot::front
 robot::back
 ----------

State

A class behavior may change when the state of a data type changes so class function does different operation 
depending upon the state of the data type. Behavior code is close to change when doing the operation based 
on state code where the state is separated from the main behavior and when required behavior passes the 
logic to a separate state abstraction. This kind of state abstraction is state pattern. This makes behavior and 
logic to be separated and logic is in state classes, making behavior close to changes and open for logic to 
be extended in the shape of more state subclasses possible to be added at run time. For example a lift can 
sustain 5 people. A person can only use the lift when there is less than 5 people I the lift. Lift behavior 
includes the opening and closing of lift doors, getting lift move up and down. Lift states include lift at rest, 
lift serving people up, lift serving people down, lift full On electrical switch board there is a plug point and 
a switch. When a user inserts pin of an electrical equipment in the plug, Bart passes this information to the 
switch. Switch internally maintains various states (i.e. On and off), one state at a time would be effective 
and effective state receives the information. It is a state which decides the action of the plug and typically on 
allows the connection whereas off doesn’t allowing.

  -----    +--------------+                 +--------------------------+
  | u | -> |    lift      | <>------------> |          state           |
  | s |    +--------------+                 +--------------------------+
  | e |    | _state:state |                 | _waitinstate:waitingstate|
  | r |    +--------------+                 | _upstate:upstate         |
  -----    | mvflr():void |                 | _downstate:downstate     |
           | open():void  |                 | _fullupstate:fullupstate |
           | close():void |                 | _fulldownstate:fulldownst|
           | nextflr():void|                +--------------------------+



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

90

           +---------------+                | open():void              |
                 / \                        | close():void             |
                  –                         | enter():void             |
                  |                         | exit():void              |
           +--------------+                 | mvflr():void             |
           | liftevent    |                 | prbttn():void            |
           +--------------+                 | nextflr():void           |
           | enter():void |                 +--------------------------+
           | exit():void  |                             / \
           | prbttn():void|                              -
           +--------------+                              |
                                                         |
               +----------------------------------------------------+
               |         |            |             |               |
  +------------+ +-------+   +---------+ +-----------+ +-------------+
  |waitingstate| |upstate|   |downstate| |fullupstate| |fulldownstate|
  +------------+ +---------+ +---------+ +-----------+ +-------------+
prbttn():vo		nextflr(		nextflr(		nextflr():		nextflr():vo
id		):void		):void		void		id
close():voi		close():		close()		close():vo		close():void
d		void		:void		id	+-------------+	
  +------------+ +---------+ +---------+ +-----------+

Code Example
    package scheduler;
    sub new {
    my ($class,@item)=@_;
    bless [@item],$class;
    }
    sub start {
    my $ref=shift;
    my $stop=0;
    while(!$stop) {
    foreach(@$ref) {
    if($_->execute() eq “stop”){
    $stop=1;
    last;
    }
    }
    sleep(1);
    }
    }
    sub register {
    my ($ref,@item)=@_;
    push @$ref,@item;
    }
    sub unregister {
    my ($ref,$item)=@_;
    splice(@$ref,(grep($ref->[$_] eq $item,0..$#{$ref}))[0],1);
    }
    1;
    <<scheduler.pm>>
    
    package handler;
    sub new {
    my ($class,$ref)=@_;
    bless $ref,$class;
    }



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

91

    sub execute {
    my $ref=shift;
    $ref->evaluate();
    }
    1;
    <<handler.pm>>
    
    package person;
    use base qw(handler);
    sub new {
    my ($class,$scheduler,$lift)=@_;
    $class->SUPER::new({users=>[],scheduler=>$scheduler,lift=>$lift,begintime=>time});
    }
    sub adduser {
    my ($ref,@users)=@_;
    push @{$ref->{users}},@users;
    }
    sub execute {
    my $ref=shift;
    if(! scalar @{$ref->{users}}) {
    $ref->{scheduler}->unregister($ref);
    } else {
    my $i=0;
    while(1) {
    last if $i >= scalar @{$ref->{users}};
    if($ref->{users}[$i]{entertime}<(time-$ref->{begintime})) {
    $ref->{scheduler}->register($ref->{users}[$i]);
    splice(@{$ref->{users}},$i,1);
    }else {
    $i=$i+1;
    }
    }
    }
    }
    sub getlift {
    my $ref=shift;
    $ref->{lift};
    }
    1;
    <<person.pm>>
    
    package user;
    use base qw(handler person);
    sub new {
    my ($class,$person,$entertime,$enterfloor,$exitfloor)=@_;
    $class->SUPER::new({person=>$person,entertime=>$entertime,enterfloor=>$enterfloor,exitfloor=>
$exitfloor});
    }
    sub execute {
    my $ref=shift;
    my $canenter=0;
    if(defined $ref->{entertime}) {
    if($ref->{enterfloor}>$ref->{exitfloor}) {
    $ref->{person}->getlift()->bttn($ref->{enterfloor},2) if $ref->{person}->getlift()-
>isopen()!=$ref->{enterfloor};
    }else {
    $ref->{person}->getlift()->bttn($ref->{enterfloor},1) if $ref->{person}->getlift()-
>isopen()!=$ref->{enterfloor};
    }



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

92

    $ref->{entertime}=undef;
    }
    if(!defined $ref->{entertime}) {
    if(defined $ref->{exitfloor} && !defined $ref->{enterfloor} && $ref->{person}->getlift()-
>isopen()==$ref->{exitfloor}) {
    $ref->{person}->getlift()->gtinout(1,$ref);
    $ref->{exitfloor}=undef;
    }else {
    if(defined $ref->{enterfloor} && $ref->{person}->getlift()->isopen()==$ref->{enterfloor}) {
    if($ref->{exitfloor}>$ref->{enterfloor}) {
    if(!($ref->{person}->getlift()->{BUTTON}[$ref->{enterfloor}]&1)) {
    $canenter=1;
    }
    }else {
    if(!($ref->{person}->getlift()->{BUTTON}[$ref->{enterfloor}]&2)) {
    $canenter=1;
    }
    }
    if($canenter) {
    $ref->{person}->getlift()->gtinout(2,$ref);
    $ref->{person}->getlift()->bttn($ref->{exitfloor},4);
    $ref->{enterfloor}=undef;
    }
    }
    }
    }
    }
    1;
    <<user.pm>>
    
    package lift;
    use base qw(handler);
    sub new {
    my ($class,$scheduler,$state)=@_;
    $class->SUPER::new({BUTTON=>[],FLOOR=>0,openstate=>0,liftmving=>0,PEOPLE=>0,MAXALLOWED=>5,TOP
FLOOR=>5,nextflrwaittime=>0,closedrwaittime=>0,scheduler=>$scheduler,STATE=>$state});
    }
    sub open {
    my $ref=shift;
    print “door opened at floor:”,$ref->{FLOOR},”\n”;
    $ref->{closedrwaittime}=time+1;
    $ref->{openstate}=1;
    }
    sub isopen() {
    my $ref=shift;
    if($ref->{openstate}) {
    $ref->{FLOOR};
    }else {
    $ref->{TOPFLOOR}+1;
    }
    }
    sub close {
    my $ref=shift;
    print “door closed at floor:”,$ref->{FLOOR},”\n”;
    $ref->{openstate}=0;
    $ref->{STATE}->close($ref);
    }
    sub mvflr {
    my $ref=shift;



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

93

    $ref->{nextflrwaittime}=time+2;
    $ref->{liftmving}=1;
    }
    sub nextflr {
    my $ref=shift;
    $ref->{liftmving}=0;
    $ref->{STATE}->nextflr($ref);
    }
    sub state {
    my $ref=shift;
    if(scalar @_) {
    print “old state:”,$ref->{STATE};
    $ref->{STATE}=shift;
    print “: changed to “,$ref->{STATE},”\n”;
    }else {
    $ref->{STATE};
    }
    }
    sub scheduler {
    $_[0]->{scheduler};
    }
    sub execute {
    my $ref=shift;
    $ref->{STATE}->execute($ref);
    }
    1;
    <<lift.pm>>
    
    package liftevent;
    use base qw(lift);
    sub bttn {
    my $ref=shift;
    $ref->state->bttn($ref,@_);
    }
    sub gtinout {
    my $ref=shift;
    $ref-state->gtinout($ref,@_);
    }
    sub bttnenable {
    my $ref=shift;
    $ref->state->bttnenable($ref,@_);
    }
    1;
    <<liftevent.pm>>
    
    package state;
    use upstate;
    use downstate;
    use fullupstate;
    use fulldownstate;
    use waitingstate;
    my ($waitingstate,$upstate,$downstate,$fullupstate,$fulldownstate)=undef;
    sub waitingstate {
    $waitingstate=’waitingstate’->new if !defined $waitingstate;
    $waitingstate;
    }
    sub upstate {
    $upstate=’upstate’->new if !defined $upstate;;
    $upstate;



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

94

    }
    sub downstate {
    $downstate=’downstate’->new if !defined $downstate;
    $downstate;
    }
    sub fullupstate {
    $fullupstate=’fullupstate’->new if !defined $fullupstate;
    $fullupstate;
    }
    sub fulldownstate {
    $fulldownstate=’fulldownstate’->new if !defined $fulldownstate;
    $fulldownstate;
    }
    sub new {
    my $class=shift;
    bless {},$class;
    }
    sub bttn {
    my ($ref,$lift,$targetfloor,$updowninside)=@_;
    $lift->{BUTTON}[$targetfloor]|=$updowninside;
    }
    sub gtinout {
    my ($ref,$lift,$inout,$user)=@_;
    if($inout==2) {
    $lift->{PEOPLE}=$lift->{PEOPLE}+1;
    print “one person getting in, PEOPLE:”,$lift->{PEOPLE},”\n”;
    }else {
    $lift->{PEOPLE}=$lift->{PEOPLE}-1;
    print “one person getting out, PEOPLE:”,$lift->{PEOPLE},”\n”;
    $lift->scheduler->unregister($user);
    }
    }
    sub bttnenable {
    my ($ref,$lift,$floor,$updown,$bttn)=@_;
    my $count=0;
    if($floor<0 && $floor>$lift->{TOPFLOOR}) {
    0;
    }else {
    if($updown==1) {
    foreach($floor..$lift->{TOPFLOOR}) {
    $count=$count+($lift->{BUTTON}[$_]&$bttn);
    }
    }else {
    foreach(0..$floor) {
    $count=$count+($lift->{BUTTON}[$_]&$bttn);
    }
    }
    }
    $count;
    }
    sub execute {
    my ($ref,$lift)=@_;
    if($lift->{openstate} && time>$lift->{closedrwaittime}) {
    $lift->close;
    }else {
    if($lift->{liftmving} && time>$lift->{nextflrwaittime}) {
    $lift->nextflr;
    }
    }



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

95

    }
    1;
    <<state.pm>>
    
    package waitingstate;
    use base qw(state);
    sub bttn {
    my ($ref,$lift,$floor,$bttn)=@_;
    $ref->SUPER::bttn($lift,$floor,$bttn);
    if($lift->{BUTTON}[$lift->{FLOOR}] & 7) {
    $lift->{BUTTON}[$lift->{FLOOR}]=0;
    $lift->open;
    }
    }
    sub close() {
    my ($ref,$lift)=@_;
    if($lift->bttnenable($lift->{FLOOR}+1,1,4)) {
    $lift->state($ref->upstate);
    }elsif($lift->bttnenable($lift->{FLOOR}-1,2,4)) {
    $lift->state($ref->downstate);
    }elsif($lift->bttnenable($lift->{FLOOR}+1,1,3)) {
    $lift->state($ref->upstate);
    }elsif($lift->bttnenable($lift->{FLOOR}-1,2,3)) {
    $lift->state($ref->downstate);
    }
    
    if($lift->{PEOPLE}>=$lift->{MAXALLOWED}) {
    if($lift->state==$ref->upstate) {
    $lift->state($ref->fullupstate);
    }else {
    if($lift->state==$ref->downstate) {
    $lift->state=$ref->fulldownstate;
    }
    }
    }
    
    if($lift->state != $ref->waitingstate) {
    $lift->mvflr;
    }
    }
    1;
    <<waitingstate.pm>>
    
    package upstate;
    use base qw(state);
    sub nextflr {
    my ($ref,$lift)=@_;
    $lift->{FLOOR}=$lift->{FLOOR}+1;
    print “upstate:next floor:”,$lift->{FLOOR},”\n”;
    if($lift->{BUTTON}[$lift->{FLOOR}]&5) {
    $lift->{BUTTON}[$lift->{FLOOR}]&=2;
    $lift->open;
    }else {
    $ref->close($lift);
    }
    }
    sub close {
    my ($ref,$lift)=@_;
    if(!$lift->bttnenable($lift->{FLOOR}+1,1,7)) {



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

96

    if($lift->bttnenable($lift->{FLOOR},2,7)) {
    $lift->state($ref->downstate);
    if($lift->{BUTTON}[$lift->{FLOOR}]&2) {
    $lift->{BUTTON}[$lift->{FLOOR}]&=5;
    $lift->open;
    return;
    }
    }else {
    $lift->state($ref->waitingstate);
    }
    }
    if($lift->{PEOPLE}>=$lift->{MAXALLOWED}) {
    if($lift->state == $ref->upstate) {
    $lift->state($ref->fullupstate);
    }else {
    if($lift->state == $ref->downstate) {
    $lift->state($ref->fulldownstate);
    }
    }
    }
    if($lift->state != $ref->waitingstate) {
    $lift->mvflr;
    }
    }
    1;
    <<upstate.pm>>
    
    package downstate;
    use base qw(state);
    sub nextflr {
    my ($ref,$lift)=@_;
    $lift->{FLOOR}=$lift->{FLOOR}-1;
    print “downstate:next floor:”,$lift->{FLOOR},”\n”;
    if($lift->{BUTTON}[$lift->{FLOOR}]&6) {
    $lift->{BUTTON}[$lift->{FLOOR}]&=1;
    $lift->open;
    }else {
    $ref->close($lift);
    }
    }
    sub close {
    my ($ref,$lift)=@_;
    if(!$lift->bttnenable($lift->{FLOOR}-1,2,7)) {
    if($lift->bttnenable($lift->{FLOOR},1,7)) {
    $lift->state($ref->upstate);
    if($lift->{BUTTON}[$lift->{FLOOR}]&1) {
    $lift->open;
    $lift->{BUTTON}[$lift->{FLOOR}]&=6;
    return;
    }
    }else {
    $lift->state($ref->waitingstate);
    }
    }
    if($lift->{PEOPLE}>=$lift->{MAXALLOWED}) {
    if($lift->state == $ref->downstate) {
    $lift->state($ref->fulldownstate);
    }elsif($lift->state==$ref->fullup) {
    $lift->state($ref->fullupstate);



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

97

    }
    }
    if($lift->state!=$ref->waitingstate) {
    $lift->mvflr;
    }
    }
    1;
    <<downstate.pm>>
    
    package fullupstate;
    use base qw(state);
    sub nextflr {
    my ($ref,$lift)=@_;
    $lift->{FLOOR}=$lift->{FLOOR}+1;
    print “fullupstate:next floor:”,$lift->{FLOOR},”\n”;
    if($lift->{BUTTON}[$lift->{FLOOR}]&4) {
    $lift->{BUTTON}[$lift->{FLOOR}]&3;
    $lift->open;
    }else {
    $ref->close($lift);
    }
    }
    sub close {
    my ($ref,$lift)=@_;
    if($lift->{PEOPLE}<=$lift->{MAXCOUNT}) {
    $lift->state($ref->upstate);
    $lift->state->close($lift);
    }else {
    if(!$lift->bttnenable($lift->{FLOOR}+1,1,4)) {
    if($lift->bttnenable($lift->{FLOOR}-1,2,4)) {
    $lift->state($ref->fulldownstate);
    }else {
    $lift->state($ref->waitingstate);
    }
    }
    if($lift->state!=$ref->waitingstate) {
    $lift->mvflr;
    }
    }
    }
    1;
    <<fullupstate.pm>>
    
    package fulldownstate;
    use base qw(state);
    sub nextflr {
    my ($ref,$lift)=@_;
    $lift->{FLOOR}=$lift->{FLOOR}-1;
    print “fulldownstate:next floor:”,$lift->{FLOOR},”\n”;
    if($lift->{BUTTON}[$lift->{FLOOR}]&4) {
    $lift->{BUTTON}[$lift->{FLOOR}]&3;
    $lift->open;
    }else {
    $ref->close($lift);
    }
    }
    sub close {
    my ($ref,$lift)=@_;
    if($lift->{PEOPLE}<$lift->{MAXALLOWED}) {



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

98

    $lift->state($ref->downstate);
    $lift->state->close($lift);
    }else {
    if(!$lift->bttnenable($lift->{FLOOR}-1,2,4)) {
    if($lift->bttnenable($lift->{FLOOR}+1,1,4)) {
    $lift->state($ref->fullupstate);
    }else {
    $lift->state($ref->waitingstate);
    }
    }
    if($lift->state!=$ref->waitingstate) {
    $lift->mvflr;
    }
    }
    }
    1;
    <<fulldownstate.pm>>
    
    use strict;
    use warnings;
    
    use scheduler;
    use person;
    use user;
    use liftevent;
    use waitingstate;
    $|=1;
    my $scheduler=new scheduler;
    my $lift=new liftevent($scheduler,’waitingstate’->waitingstate);
    my $person=new person($scheduler,$lift);
    $person->adduser(new user($person,0,0,1),new user($person,0,5,0),new user($person,0,1,5),new 
user($person,10,0,3),new user($person,4,5,2),new user($person,5,2,3),new user($person,5,4,1),new 
user($person,3,0,2),new user($person,14,3,0),new user($person,2,3,4),new user($person,0,2,5),new 
user($person,0,4,0),new user($person,0,3,1),new user($person,0,0,1));
    $scheduler->register($person,$lift);
    $scheduler->start;
    <<main.pl>>
 ---data---
 door opened at floor:0
 one person getting in, PEOPLE:1
 one person getting in, PEOPLE:2
 door closed at floor:0
 old state:waitingstate=HASH(0x78b044): changed to upstate=HASH(0x52fd54)
 upstate:next floor:1
 door opened at floor:1
 one person getting out, PEOPLE:1
 one person getting in, PEOPLE:2
 one person getting out, PEOPLE:1
 door closed at floor:1
 upstate:next floor:2
 door opened at floor:2
 one person getting in, PEOPLE:2
 one person getting in, PEOPLE:3
 door closed at floor:2
 upstate:next floor:3
 door opened at floor:3
 one person getting in, PEOPLE:4
 one person getting out, PEOPLE:3
 door closed at floor:3



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

99

 upstate:next floor:4
 door opened at floor:4
 one person getting out, PEOPLE:2
 door closed at floor:4
 upstate:next floor:5
 door opened at floor:5
 one person getting out, PEOPLE:1
 one person getting out, PEOPLE:0
 door closed at floor:5
 old state:upstate=HASH(0x52fd54): changed to downstate=HASH(0x52ff64)
 door opened at floor:5
 one person getting in, PEOPLE:1
 one person getting in, PEOPLE:2
 door closed at floor:5
 downstate:next floor:4
 door opened at floor:4
 one person getting in, PEOPLE:3
 one person getting in, PEOPLE:4
 door closed at floor:4
 downstate:next floor:3
 door opened at floor:3
 one person getting in, PEOPLE:5
 one person getting in, PEOPLE:6
 door closed at floor:3
 old state:downstate=HASH(0x52ff64): changed to fulldownstate=HASH(0x52fc24)
 fulldownstate:next floor:2
 door opened at floor:2
 one person getting out, PEOPLE:5
 door closed at floor:2
 fulldownstate:next floor:1
 door opened at floor:1
 one person getting out, PEOPLE:4
 one person getting out, PEOPLE:3
 door closed at floor:1
 old state:fulldownstate=HASH(0x52fc24): changed to downstate=HASH(0x52ff64)
 downstate:next floor:0
 door opened at floor:0
 one person getting out, PEOPLE:2
 one person getting out, PEOPLE:1
 one person getting out, PEOPLE:0
 door closed at floor:0
 old state:downstate=HASH(0x52ff64): changed to upstate=HASH(0x52fd54)
 door opened at floor:0
 one person getting in, PEOPLE:1
 one person getting in, PEOPLE:2
 door closed at floor:0
 upstate:next floor:1
 door opened at floor:1
 door closed at floor:1
 upstate:next floor:2
 door opened at floor:2
 one person getting out, PEOPLE:1
 door closed at floor:2
 upstate:next floor:3
 door opened at floor:3
 one person getting out, PEOPLE:0
 door closed at floor:3
 old state:upstate=HASH(0x52fd54): changed to waitingstate=HASH(0x78b044)
 ----------



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

100

State pattern way of solving arithmetic equations:

               +----------------+        +-------------------+
               |   calculator   | -----> |      state        |   
               +----------------+        +-------------------+
               | _state:state   |        | _addition:addit   |
               +----------------+        |  tionstate        |
               | calculate(expre|        | _subtraction:subt |
               | prtonscrn():void|       |  ractionsteate    |
               | setstate(state:|        | _multiplication:mu|
               |  state):void   |        |  ltiplicationstate|
               +----------------+        | _division:division|
                                         |  state            |
                                         +-------------------+
                                         | calcuate(expressio|
                                         |  n):string        |
                                         +-------------------+
                                                  / \
                                                   -
                                                   |
               +--------------------------------------------------+
               |                |                |                |
 +-------------+ +-----------------+ +------------------+ +------------+
 |additionstate| |substractionstate| |multiplicatinstate| |divisonstate|
 +-------------+ +-----------------+ +------------------+ +------------+
evaluate(exp		evaluate(express		evaluate(expressi		evaluate(exp
ression):st		ion):string		ion):string		ression):st
ring	+-----------------+ +------------------+	ring				
 +-------------+                                          +------------+

Code Example
    package calculator;
    use result;
    use addition;
    use division;
    use multiplication;
    use subtraction;
    sub new {
    my ($class,$state)=@_;
    bless {STATE=>$state},$class;
    }
    sub setstate {
    my ($ref,$state)=@_;
    $ref->{STATE}=$state;
    }
    sub calculate {
    my ($ref,$expression)=@_;
    my $state=$ref->{STATE};
    $ref->{STATE}->calculate($expression,$ref);
    while($state != $ref->{STATE}) {
    $expression=$ref->{STATE}->calculate($expression,$ref);
    }
    $expression;
    }
    sub printonscreen {
    my ($ref,$string)=@_;
    print $string;
    }



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

101

    1;
    <<calculator.pm>>
    
    package state;
    my ($addition,$subtraction,$multiplication,$division,$result)=undef;
    sub additionstate {
    $addition=new(‘addition’) if !defined $addition;
    $addition;
    }
    sub subtractionstate {
    $subtraction=new(‘subtraction’) if !defined $subtraction;
    $subtraction;
    }
    sub multiplicationstate {
    $multiplication=new(‘multiplication’) if !defined $multiplication;
    $multiplication;
    }
    sub divisionstate {
    $division=new(‘division’) if !defined $division;
    $division;
    }
    sub result {
    $result=new(‘result’) if !defined $result;
    $result;
    }
    sub new {
    my $class=shift;
    bless {},$class;
    }
    
    sub calculate {
    my ($ref,$expression,$operator,$calculatorref)=@_;
    while($expression=~/(-?\d+)($operator)(-?\d+)/) {
    $calculatorref->printonscreen(“$1:$3\n”);
    $expression=join(‘’,$`,eval “$1$2$3”,$’);
    }
    $expression;
    }
    1;
    <<state.pm>>
    
    package addition;
    use base qw(state);
    sub calculate {
    my ($ref,$expression,$calculatorref)=@_;
    $calculatorref->printonscreen(“adding...:expression:$expression\n”);
    $expression=__PACKAGE__->SUPER::calculate($expression,’\+’,$calculatorref);
    $calculatorref->setstate(__PACKAGE__->SUPER::result);
    $expression;
    }
    1;
    <<addition.pm>>
    
    package subtraction;
    use base qw(state);
    sub calculate {
    my ($ref,$expression,$calculatorref)=@_;
    $calculatorref->printonscreen(“subtracting...:expression:$expression\n”);
    $expression=__PACKAGE__->SUPER::calculate($expression,’-’,$calculatorref);



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

102

    $calculatorref->setstate(__PACKAGE__->SUPER::additionstate);
    $expression;
    }
    1;
    <<subtraction.pm>>
    
    package multiplication;
    use base qw(state);
    sub calculate {
    my ($ref,$expression,$calculatorref)=@_;
    $calculatorref->printonscreen(“multiplying...:expression:$expression\n”);
    $expression=__PACKAGE__->SUPER::calculate($expression,’\*’,$calculatorref);
    $calculatorref->setstate(__PACKAGE__->SUPER::subtractionstate);
    $expression;
    }
    1;
    <<multiplication.pm>>
    
    package divisition;
    use base qw(state);
    sub calculate {
    my ($ref,$expression,$calculatorref)=@_;
    $calculatorref->printonscreen(“division...”);
    SUPER::calculate($expression,’[/]’);
    $calculatorref->setstate->(SUPER::multiplication);
    $expression;
    }
    1;
    package division;
    use base qw(state);
    sub calculate {
    my ($ref,$expression,$calculatorref)=@_;
    $calculatorref->printonscreen(“dividing...:expression:$expression\n”);
    $expression=__PACKAGE__->SUPER::calculate($expression,’/’,$calculatorref);
    $calculatorref->setstate(__PACKAGE__->SUPER::multiplicationstate);
    $expression;
    }
    1;
    <<division.pm>>
    
    package result;
    use base qw(state);
    sub calculate {
    my ($ref,$expression,$calculatorref)=@_;
    $calculatorref->setstate($ref->SUPER::divisionstate());
    $expression;
    }
    1;
    <<result.pm>>
                   
    use strict;
    use warnings;
    use calculator;
    use state;
    
    print “result:”,new calculator(state::result)->calculate(‘1+3/3*2-2+6/2/3-2’),”\n”;
    print “result:”,new calculator(state::result)->calculate(‘1-2+4*3-6/2+8*3-2*70/10’);
    <<main.pl>>



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

103

 ---data---
 dividing...:expression:1+3/3*2-2+6/2/3-2
 3:3
 6:2
 3:3
 multiplying...:expression:1+1*2-2+1-2
 1:2
 subtracting...:expression:1+2-2+1-2
 2:2
 1:2
 adding...:expression:1+0+-1
 1:0
 1:-1
 result:0
 dividing...:expression:1-2+4*3-6/2+8*3-2*70/10
 -6:2
 70:10
 multiplying...:expression:1-2+4*3-3+8*3-2*7
 4:3
 8:3
 -2:7
 subtracting...:expression:1-2+12-3+24-14
 1:2
 12:3
 24:14
 adding...:expression:-1+9+10
 -1:9
 8:10
 result:18
 ----------

Observer

When a subject has to be observed by many observers, leading to a data view/controller model, makes an 
observer pattern. A subject which keeps the data lets observers registered with it, data changes in the subject 
trigger event sent to all the observers who can update their status. One of the observer may again make some 
tuning in the subject leading to data change in the subject which make other observers get informed For 
example, in an auction an auctioneer is a subject where as bidders are observers. Auctioneer starts with an 
initial value and let the bidders (observers/view) hear it. An observer (controller) makes a bid and subject 
(model/data) changes the auction rate and announces again it at all the observers (viewers). Typically, any 
general election happens and many observers get placed there from many different countries.

         +---------------+      --------     +-------------+
         |  auctioneer   | <--- |client| --> |   bidder    |
         +---------------+      --------     +-------------+
         | state:state   |  ---------------> |update(state:|
         +---------------+  <-------------<> | state):void |
         | attach(bidder:|                   +-------------+
         |  bidder):void |                         / \
         | detach(bidder:|                          –   
         |  bidder):void |                          |
         | notify():void |                          |
         | update(state:s|                          |
         |  tate):void   |                          |
         +---------------+                          |
                                                    |
             +----------------------------------------------------+
             |            |                   |                   |
             |    +-------------+    +--------------+   +--------------+
             |    |indianbidder |    |americanbidder|   |japanesebidder|



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

104

             |    +-------------+    +--------------+   +--------------+
             |    | state:state |    | state:state  |   | state:state  |
             |    +-------------+    +--------------+   +--------------+
             |    | update(state|    | update(state:|   | update(state:|
             |    |  :state):void|   |  state):void |   |  state):void |
             |    +--------------+   +--------------+   +--------------+
             |
             +-------------------------------+
             |              |                |
 +--------------+ +-----------------+ +-------------+
 |canadianbidder| |austrailianbidder| |chinesebidder|
 +--------------+ +-----------------+ +-------------+
 | state:state  | | state:state     | | state:state |
 +--------------+ +-----------------+ +-------------+
 | update(state:| | update(state:sta| | update(state|
 |  state):void | |  ate):void      | |  :state)void|
 +--------------+ +-----------------+ +-------------+

Code Example
    package scheduler;
    sub new {
    my ($class,@item)=@_;
    bless [@item],$class;
    }
    sub start {
    my $ref=shift;
    my $stop=0;
    while(!$stop) {
    foreach (@$ref) {
    if($_->execute() eq “stop”){
    $stop=1;
    last;
    }
    }
    }
    }
    sub register {
    my ($ref,$item)=@_;
    push @$ref,$item;
    }
    sub unregister {
    my ($ref,$item)=@_;
    delete @$ref[grep($$ref[$_]=~/$item/,0..$#$ref)];
    }
    1;
    <<scheduler.pm>>
    package sharedmem;
    my $instance=undef;
    sub instance {
    my $class=shift;
    if(!defined $instance) {
    $instance=__PACKAGE__->new();
    }else {
    $instance;
    }
    }
    sub new {
    my $class=shift;



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

105

    bless [],$class;
    }
    sub getfromindex {
    my ($ref,$index)=@_;
    $ref->[$index];
    }
    sub setinindex {
    my ($ref,$index,$val)=@_;
    $ref->[$index]=$val;
    }
    1;
    <sharedmem.pm>>
    
    package handler;
    sub new {
    my ($class,$ref)=@_;
    bless $ref,$class;
    }
    sub execute {
    my $ref=shift;
    $ref->evaluate();
    }
    1;
    <<handler.pm>>
    
    package subject;
    use base qw(handler);
    sub new {
    my ($class,$value,$adjustfactor,$sharedmem)=@_;
    $class->SUPER::new({value=>$value,adjustfactor=>$adjustfactor,sharedmem=>$sharedmem,announce=
>0,observers=>[]});
    }
    sub register {
    my ($ref,@observer)=@_;
    push @{$ref->{observers}},@observer;
    }
    sub evaluate {
    my $ref=shift;
    my $maximum=$ref->{value};
    foreach(split(‘:’,$ref->{sharedmem}->getfromindex(2))) {
    if($_ > $maximum) {
    $maximum=$_;
    }
    }
    $ref->{sharedmem}->setinindex(2,undef);
    if($ref->{value}==$maximum) {
    if($ref->{announce}==3) {
    print “all three announcement over, final bidding at:”,$ref->{value},”\n”;
    return “stop”;
    }else {
    $ref->{announce}=$ref->{announce}+1;
    print “making announcement number:”,$ref->{announce},”, at:”,$ref->{value},”\n”;
    $ref->{sharedmem}->setinindex(1,$ref->{sharedmem}->getfromindex(1)+$ref->{adjustfactor});
    }
    }else {
    $ref->{announce}=0;
    $ref->{sharedmem}->setinindex(1,0);
    $ref->{value}=$maximum;
    print “auctioneer:new bidding rate:”,$maximum,”\n”;



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

106

    }
    map ($_->notify(), @{$ref->{observers}});
    $ref->{sharedmem}->setinindex(0,$ref->{value});
    #$ref->{sharedmem}->setinindex(1,$ref->{adjustfactor});
    }
    1;
    <<subject.pm>>
    
    package observer;
    use base qw(handler);
    sub new {
    my ($class,$bidvalue,$sharedmem)=@_;
    $class->SUPER::new({bidvalue=>$bidvalue,sharedmem=>$sharedmem});
    }
    sub notify {
    my $ref=shift;
    $ref->{notified}=1;
    }
    sub bid {
    my $ref=shift;
    print “bidder:bidding at:”,$ref->{bidvalue},”\n”;
    $ref->{sharedmem}->setinindex(2,join(‘:’,$ref->{sharedmem}->getfromindex(2),$ref-
>{bidvalue}));
    }
    sub evaluate {
    my $ref=shift;
    if($ref->{notified}) {
    $ref->{notified}=0;
    if($ref->{bidvalue}>$ref->{sharedmem}->getfromindex(0) && $ref->{bidvalue}<($ref-
>{sharedmem}->getfromindex(0)+$ref->{sharedmem}->getfromindex(0)*$ref->{sharedmem}-
>getfromindex(1)/100)) {
    $ref->bid;
    }
    }
    }
    1;
    <<observer.pm>>
    
    use strict;
    use warnings;
    
    use scheduler;
    use subject;
    use observer;
    use sharedmem;
    
    my $sharedmem=new sharedmem;
    my $subject=new subject(10,110,$sharedmem);
    my $indianbidder=new observer(100,$sharedmem);
    my $canadianbidder=new observer(40,$sharedmem);
    my $americanbidder=new observer(80,$sharedmem);
    my $chinesebidder=new observer(90,$sharedmem);
    my $austrailianbidder=new observer(10,$sharedmem);
    my $japanesebidder=new observer(120,$sharedmem);
    $subject->register($indianbidder,$canadianbidder,$americanbidder,$chinesebidder,$austrailianb
idder,$japanesebidder);
    new scheduler($subject,$indianbidder,$canadianbidder,$americanbidder,$chinesebidder,$austrail
ianbidder,$japanesebidder)->start;
    <<main.pl>>



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

107

 ---data---
 making announcement number:1, at:10
 making announcement number:2, at:10
 making announcement number:3, at:10
 bidder:bidding at:40
 auctioneer:new bidding rate:40
 making announcement number:1, at:40
 bidder:bidding at:80
 auctioneer:new bidding rate:80
 making announcement number:1, at:80
 bidder:bidding at:100
 bidder:bidding at:90
 bidder:bidding at:120
 auctioneer:new bidding rate:120
 making announcement number:1, at:120
 making announcement number:2, at:120
 making announcement number:3, at:120
 all three announcement over, final bidding at:120
 ----------

Arithmetic expression solution with observer:

  +----------------+           --------
  |     subject    | <-------- |client| ------   -----------------
  +----------------+ <-------| --------      |-> |  observer     |
  | register(obsrvr| ------| |                   -----------------
:observer):void			---------------<>	update(express
notify():void		------------------>	ion:string):v	
update(state:st		oid		
ate):void	+---------------+			
  +----------------+                                / \
                                                     -
                                                     |
           +---------------------------------------------------+
           |              |                |                   |
 +---------------+  +---------------+  +--------------+ +-------------+
 |   division    |  |multiplication |  | subtraction  | |  addition   |
 +---------------+  +---------------+  +--------------+ +-------------+
update(express		update(express		update(expres		update(expre
ion:string):v		ion:string):v		sion:string)		ssion:strin
oid		oid		void		g):void
 +---------------+  +---------------+  +--------------+ +-------------+

Code Example
    package scheduler;
    sub new {
    my ($class,@item)=@_;
    bless [@item],$class;
    }
    sub start {
    my $ref=shift;
    my $stop=0;
    while(!$stop) {
    foreach (@$ref) {
    if($_->execute() eq “stop”){
    $stop=1;
    last;



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

108

    }
    }
    }
    }
    sub register {
    my ($ref,$item)=@_;
    push @$ref,$item;
    }
    sub unregister {
    my ($ref,$item)=@_;
    delete @$ref[grep($$ref[$_]=~/$item/,0..$#$ref)];
    }
    1;
    <<scheduler.pm>>
    package sharedmem;
    my $instance=undef;
    sub instance {
    my $class=shift;
    if(!defined $instance) {
    $instance=__PACKAGE__->new();
    }else {
    $instance;
    }
    }
    sub new {
    my $class=shift;
    bless [],$class;
    }
    sub getfromindex {
    my ($ref,$index)=@_;
    $ref->[$index];
    }
    sub setinindex {
    my ($ref,$index,$val)=@_;
    $ref->[$index]=$val;
    }
    1;
    <sharedmem.pm>>
    
    package handler;
    sub new {
    my $class=shift;
    bless {},$class;
    }
    sub execute {
    my $ref=shift;
    $ref->evaluate();
    }
    1;
    <<handler.pm>>
    
    package observer;
    use sharedmem;
    use base qw(handler);
    sub evaluate {
    my $ref=shift;
    my $expression;
    if($ref->{notified}) {
    $expression=’sharedmem’->instance->getfromindex(0);



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

109

    while ($expression=~/(-?\d+)($ref->{operator})(-?\d+)/) {
    $expression=join(‘’,$`,eval “$1$2$3”,$’);
    }
    ‘sharedmem’->instance->setinindex(2,$expression);
    ‘sharedmem’->instance->setinindex(1,0);
    $ref->{notified}=false;
    }
    }
    sub notify {
    my $ref=shift;
    $ref->{notified}=true;
    }
    sub getexpression {
    ‘sharedmem’->instance->getfromindex(0);
    }
    1;
    <<observer.pm>>
    
    package divider;
    use base qw(observer);
    sub new {
    my $ref=__PACKAGE__->SUPER::new;
    $ref->{operator}=’/’;
    $ref;
    }
    sub evaluate {
    my $ref=shift;
    if($ref->SUPER::getexpression()=~/\d$ref->{operator}\d/) {
    print “divider:”,$ref->SUPER::getexpression(),”\n”;
    $ref->SUPER::evaluate($ref->SUPER::getexpression());
    }
    }
    1;
    <<divider.pm>>
    
    package subtracter;
    use base qw(observer);
    sub new {
    my $class=shift;
    my $ref=__PACKAGE__->SUPER::new;
    $ref->{operator}=’-’;
    $ref;
    }
    sub evaluate {
    my $ref=shift;
    if($ref->SUPER::getexpression()!~/\d[*\/]\d/ && $ref->SUPER::getexpression()=~/\d$ref-
>{operator}\d/) {
    printf “subtracter:%s\n”,$ref->SUPER::getexpression();
    $ref->SUPER::evaluate($ref->SUPER::getexpression());
    }
    }
    1;
    <<subtracter.pm>>
    
    package multiplier;
    use base qw(observer);
    sub new {
    my $ref=__PACKAGE__->SUPER::new;
    $ref->{operator}=’\*’;



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

110

    $ref;
    }
    sub evaluate {
    my $ref=shift;
    if($ref->SUPER::getexpression()!~/\// && $ref->SUPER::getexpression()=~/\d$ref-
>{operator}\d/) {
    print “multiplier:”,$ref->SUPER::getexpression(),”\n”;
    $ref->SUPER::evaluate($ref->SUPER::getexpression());
    }
    }
    1;
    <<multiplier.pm>>
    
    package adder;
    use base qw(observer);
    sub new {
    my $ref=__PACKAGE__->SUPER::new;
    $ref->{operator}=’\+’;
    $ref;
    }
    sub evaluate {
    my $ref=shift;
    if($ref->SUPER::getexpression()!~/\d[-*\/]\d/ && $ref->SUPER::getexpression()=~/\d$ref-
>{operator}\d/) {
    print “adder:”,$ref->SUPER::getexpression(),”\n”;
    $ref->SUPER::evaluate();
    }
    }
    1;
    <<adder.pm>>
    
    package subject;
    use sharedmem;
    use base qw(handler);
    sub new {
    my ($class,$expression)=@_;
    ‘sharedmem’->instance->setinindex(2,$expression);
    ‘sharedmem’->instance->setinindex(1,0);
    bless [],$class;
    }
    sub execute {
    my $ref=shift;
    if(‘sharedmem’->instance->getfromindex(1)==1) {
    print “result:”,’sharedmem’->instance->getfromindex(2);
    “stop”;
    }else {
    ‘sharedmem’->instance->setinindex(1,1);
    ‘sharedmem’->instance->setinindex(0,’sharedmem’->instance->getfromindex(2));
    map {$_->notify} @$ref;
    }
    }
    sub register {
    my ($ref,@item)=@_;
    push @$ref,@item;
    }
    1;
    <<subject.pm>>
    
    use strict;



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

111

    use warnings;
    
    use adder;
    use multiplier;
    use divider;
    use subtracter;
    use subject;
    use scheduler;
    
    my $adderref=new adder;
    my $multiplierref=new multiplier;
    my $dividerref=new divider;
    my $subtracterref=new subtracter;
    
    my $subjectref=new subject(“1-2+4*3-6/2+8*3-2*70/10”);
    $subjectref->register($adderref,$multiplierref,$dividerref,$subtracterref);
    new scheduler($subjectref,$adderref,$multiplierref,$dividerref,$subtracterref)->start;
    <<main.pl>>

 ---data---
 divider:1-2+4*3-6/2+8*3-2*70/10
 multiplier:1-2+4*3-3+8*3-2*7
 subtracter:1-2+12-3+24-14
 adder:-1+9+10
 result:18
 ----------

Visitor 
A collection data type generally supports similar kind of operations. If a new operation is to be supported on 
a collection it would violate design principle, if collection class adds new operations and then it would be 
required at each collection class. Better solution is if a Separate dedicated interface does this. Each subclass 
of an interface adds a new operation this makes adding operation to a class at run time. This new interface 
is the visitor pattern as it visits collection class in order to provide new operation. For example, a data 
container abstract class provides data sorting operation, but does not provide list size, complexity calculation 
operation. A visitor class can have subclasses statistics, which calculate size and complexities of the member 
data respectively. Collection class can have a method which accepts these visitor classes and calling method 
actually passes the call to the visitor so that specific operation in the visitor implementation can take place. 
During a course of time, many visitors visit any province and write about its social, economic and political 
status. They collect this information from the province’s resources only.

               +-----------------+
               |    element      | <-----|
               +-----------------+       |           +-----------------+
               | enumerate():data|       |--------<> |   visitor       |
               | accept(visitor:v|                   +-----------------+
               |  isitor):void   |                   | visit(elmnt:buis|
               +-----------------+                   |  snessman):void |
                       / \                           | visit(elmnt:buis|
                        –                            |  snesstype):void|
                        |                            | visit(elmnt:city|
                        |                            |  ):void         |
                        |                            +-----------------+
                        |                                       / \
       +----------------+-----------------------------+          -
       |                |                             |          |
 +--------------+       +--------------+       +--------------+  |
 | buisnessman  |<>-|   | buisnesstype |<>-|   |    city      |  |
 +--------------+   |   +--------------+   |   +--------------+  |
 | enumerate():b|   |-> | enumerate():b|   |-> | enumerate():b|  |



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

112

uisnesstype		uisnesstype		uisnesstype	
accept(vstr:v		accept(vstr:v		accept(vstr:v	
isitor)void		isitor):void		isitor):void	
 +--------------+       +--------------+       +--------------+  |
                                                                 |
                                                    +------------------+
                                                    |statisticsvisitor |
                                                    +------------------+
                                                    | visit(elmnt:buisn|
                                                    |  essman):void    |
                                                    | visit(elmnt:buisn|
                                                    |  esstype):void   |
                                                    | visit(elmnt:city)|
                                                    |  :void           |
                                                    +------------------+

Code Example
    package element;
    sub new {
    my ($class,$ref)=@_;
    bless $ref,$class;
    }
    1;
    <<element.pm>>
    
    package buisnessman;
    use base qw(element);
    sub new {
    my ($class,$name,@buisnesstype)=@_;
    $class->SUPER::new({name=>$name,buisnesstype=>\@buisnesstype});
    }
    sub enumerate {
    my $ref=shift;
    $ref->{buisnesstype};
    }
    sub accept {
    my ($ref,$visitor)=@_;
    $visitor->visit($ref);
    }
    sub name {
    $_[0]->{name};
    }
    1;
    <<buisnessman.pm>>
    
    package buisnesstype;
    use base qw(element);
    sub new {
    my ($class,$name,@cities)=@_;
    $class->SUPER::new({name=>$name,cities=>\@cities});
    }
    sub enumerate {
    my $ref=shift;
    $ref->{cities};
    }
    sub name {
    $_[0]->{name};
    }



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

113

    sub accept {
    my ($ref,$visitor)=@_;
    $visitor->visit($ref);
    }
    1;
    <<buisnesstype.pm>>
    
    package city;
    use base qw(element);
    sub new {
    my ($class,$name)=@_;
    $class->SUPER::new({name=>$name});
    }
    sub enumerate {
    }
    sub accept {
    my ($ref,$visitor)=@_;
    $visitor->visit($ref);
    }
    sub name {
    $_[0]->{name};
    }
    1;
    <<city.pm>>
    
    package visitor;
    sub new {
    my $class=shift;
    bless {},$class;
    }
    1;
    <<visitor.pm>>
    
    package statistics;
    use base qw(visitor);
    sub visit {
    my ($ref,$element)=@_;
    print $element->name,”\n”;
    map($_->accept($ref),@{$element->enumerate});
    }
    1;
    <<statistics.pm>>
    
    use strict;
    use warnings;
    
    use city;
    use buisnesstype;
    use buisnessman;
    use statistics;
    new buisnessman(“person : tim”,new buisnesstype(“buisnesstype : hardware”,new city(“city : 
mangalore”),new city(“city : mysore”),new city(“city : mandya”)),new buisnesstype(“buisnesstype 
: software”,new city(“city : chennai”),new city(“city : chaibasa”),new city(“city : churu”)),new 
buisnesstype(“buisnesstype : realstate”,new city(“city : delhi”),new city(“city : dhaka”),new 
city(“city : dumka”)))->accept(new statistics);
    <<main.pl>>

 ---data---



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

114

 person : tim
 buisnesstype : hardware
 city : mangalore
 city : mysore
 city : mandya
 buisnesstype : software
 city : chennai
 city : chaibasa
 city : churu
 buisnesstype : realstate
 city : delhi
 city : dhaka
 city : dumka
 ----------

Arithmetic expression solution through this pattern:

       +-----------------+         -------- 
       |    element      | <------ |client| ----
       +-----------------+ <-----  --------    |  +---------------+
       | execute(expressi|      |              +> |    visitor    |
       |  on:string):void|      |--------------<> +---------------+
       | accpet(vstr:visi|                        | visitor(elemt:|
       |  tor):void      |                        |  element):void|
       +-----------------+                        +---------------+
               / \                                             / \       
                –                                               –     
                |                                               |
 +-----------------------------------------------------------+  |----
 |                      |                    |               |      |
 +--------+      +--------------+       +--------+       +--------+ |
 |division|<>-|  |multiplication|<>-|   |subtract|<>-|   |addition| |
 +--------+   |  +--------------+   |   +--------+   |   +--------+ |
accept(		->	accept(vstr:v		->	accept(		->	accept(	
vstr:v		visitor):void		vstr:v		vstr:vi				
isitor	+--------------+	visito		sitor)						
):void		):void		:void						
 +--------+                             +--------+       +--------+ |
                                                                    |
                                                +-------------------+
                                                | statisticsvisitor |
                                                +-------------------+
                                                | visitor(elemnt:div|
                                                |  ision):void      |
                                                | visitor(elemnt:mul|
                                                |  tiplication):void|
                                                | visitor(elmnt:subt|
                                                |  raction):void    |
                                                | visitor(elmnt:addi|
                                                |  tion):void       |
                                                +-------------------+



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

115

Code Example
    package basedec;
    sub new {
    my $class=shift;
    bless {ID=>$class},$class;
    }
    sub id {
    my $ref=shift;
    $ref->{ID};
    }
    sub execute {
    my ($ref,$expression)=@_;
    print $ref->id,”:executing expression:”,$expression->getexpression,”\n”;
    my $expressionstring=$expression->getexpression;
    while($expressionstring=~/(-?\d+)($ref->{operator})(-?\d+)/) {
    $expressionstring=join(‘’,$`,eval “$1$2$3”,$’);
    }
    $expression->setexpression($expressionstring);
    }
    sub accept {
    my ($ref,$visitor,$expression)=@_;
    $visitor->visit($ref,$expression);
    }
    1;
    <<basedec.pm>>
    
    package expression;
    use base qw(basedec);
    sub new {
    my ($class,$expressionstring)=@_;
    my $ref=__PACKAGE__->SUPER::new;
    $ref->{expressionstring}=$expressionstring;
    $ref;
    }
    sub getexpression {
    my $ref=shift;
    $ref->{expressionstring};
    }
    sub setexpression {
    my ($ref,$expressionstring)=@_;
    $ref->{expressionstring}=$expressionstring;
    }
    1;
    <<expression.pm>>
    
    package adder;
    use base qw(basedec);
    sub new {
    my ($class,$decoratee)=@_;
    my $ref=__PACKAGE__->SUPER::new;
    $ref->{DECORATEE}=undef;
    $ref->{operator}=’\+’;
    $ref;
    }
    sub execute {
    my ($ref,$expression)=@_;
    $ref->SUPER::execute($expression);



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

116

    print “result:”,$expression->getexpression,”\n”;
    }
    1;
    <<adder.pm>>
    
    package divider;
    use base qw(basedec);
    sub new {
    my ($class,$decoratee)=@_;
    my $ref=__PACKAGE__->SUPER::new;
    $ref->{DECORATEE}=$decoratee;
    $ref->{operator}=’/’;
    $ref;
    }
    1;
    <<divider.pm>>
    
    package multiplier;
    use base qw(basedec);
    sub new {
    my ($class,$decoratee)=@_;
    my $ref=__PACKAGE__->SUPER::new;
    $ref->{DECORATEE}=$decoratee;
    $ref->{operator}=’\*’;
    $ref;
    }
    1;
    <<multiplier.pm>>
    
    package subtracter;
    use base qw(basedec);
    sub new {
    my ($class,$decoratee)=@_;
    my $ref=__PACKAGE__->SUPER::new;
    $ref->{DECORATEE}=$decoratee;
    $ref->{operator}=’-’;
    $ref;
    }
    1;
    <<subtracter.pm>>
    
    package visitor;
    sub new {
    my $class=shift;
    bless {},$class;
    }
    1;
    <<visitor.pm>>
    
    package statisticsvisitor;
    use base qw(visitor);
    sub visit {
    my ($ref,$component,$expression)=@_;
    print “visitor,visiting:”,$component->id,”\n”;
    $component->execute($expression);
    $component->{DECORATEE}->accept($ref,$expression) if defined $component->{DECORATEE};
    }
    1;
    <<statisticsvisitor.pm>>



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

117

    
    use strict;
    use warnings;
    use basedec;
    use visitor;
    use statisticsvisitor;
    use expression;
    use adder;
    use multiplier;
    use divider;
    use subtracter;
    
    new divider(new multiplier(new subtracter(new adder)))->accept(new statisticsvisitor,new 
expression(‘1+3/3*2-2+6/2/3-2’));
    new divider(new multiplier(new subtracter(new adder)))->accept(new statisticsvisitor,new 
expression(‘1-2+4*3-6/2+8*3-2*70/10’));
    <<main.pl>>

 ---data---
 visitor,visiting:divider
 divider:executing expression:1+3/3*2-2+6/2/3-2
 visitor,visiting:multiplier
 multiplier:executing expression:1+1*2-2+1-2
 visitor,visiting:subtracter
 subtracter:executing expression:1+2-2+1-2
 visitor,visiting:adder
 adder:executing expression:1+0+-1
 result:0
 visitor,visiting:divider
 divider:executing expression:1-2+4*3-6/2+8*3-2*70/10
 visitor,visiting:multiplier
 multiplier:executing expression:1-2+4*3-3+8*3-2*7
 visitor,visiting:subtracter
 subtracter:executing expression:1-2+12-3+24-14
 visitor,visiting:adder
 adder:executing expression:-1+9+10
 result:18
 ----------

Direct Call Patterns
As per the name a method calls other directly and in non-recursive way and in non callback way.

Command (subclassed)

In this approach action taken by subject class is given separate object identity. Each action (command) 
subclass are actually calling the subject’s respective action. The program needs to mix their code with the 
command abstract class with an execute method called against it and depending upon the subclass object 
actual action would take place.

 --------     +--------                 +--------------+
 |client| --->|invoker|  -------------> |   command    |
 --------     --------+                 +--------------+
                                        |execute():void|
                                        +--------------+
                                              / \
                                               -
         +-----------------+                   |
         |      robot      |                   |



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

118

         +-----------------+                   |
  +----> | moveup():void   |                   |
+--->	moveright():void			
	+-->	movefront():void		
		+->	moveback():void	
			+-----------------+	
			+-----------------------------------------------+	
			+--------+       +---------+    +---------+       +--------+	
				moveleft
			+--------+<>. .<>+---------+    +---------+<>. .<>+--------+	
				execute
			+--------+	
		+---------------+		
	+------------------+			
+--------------------------------------------------+				
  +-----------------------------------------------------+

Code Example
    package command;
    sub new {
    my ($class,$robot)=@_;
    bless {robot=>$robot},$class;
    }
    1;
    <<command.pm>>
    
    package moveleft;
    use base qw(command);
    sub execute {
    my $ref=shift;
    $ref->{robot}->moveleft();
    }
    1;
    <<moveleft.pm>>
    
    package moveright;
    use base qw(command);
    sub execute {
    my $ref=shift;
    $ref->{robot}->moveright();
    }
    1;
    <<moveright.pm>>
    
    package movefront;
    use base qw(command);
    sub execute {
    my $ref=shift;
    $ref->{robot}->movefront();
    }
    1;
    <<movefront.pm>>



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

119

    
    package moveback;
    use base qw(command);
    sub execute {
    my $ref=shift;
    $ref->{robot}->moveback();
    }
    1;
    <<moveback.pm>>
    
    package robot;
    sub new {
    my $class=shift;
    bless {},$class;
    }
    sub moveleft {
    print “moved left\n”;
    }
    sub moveright {
    print “moved right\n”;
    }
    sub movefront {
    print “moved front\n”;
    }
    sub moveback {
    print “moved back\n”;
    }
    1;
    <<robot.pm>>
    
    package invoker;
    sub new {
    my $class=shift;
    bless {order=>undef},$class;
    }
    sub takeorder {
    my ($ref,@actions)=@_;
    push @{$ref->{order}},@actions;
    }
    sub perform {
    my $ref=shift;
    map($_->execute,@{$ref->{order}});
    }
    1;
    <<invoker.pm>>
    
    use strict;
    use warnings;
    
    use invoker;
    use moveleft;
    use moveright;
    use movefront;
    use moveback;
    use robot;
    
    my $robot=new robot;
    my $invoker=new invoker;
    $invoker->takeorder(new moveleft($robot),new moveleft($robot),new movefront($robot),new 



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

120

movefront($robot),new moveright($robot),new moveright($robot),new moveback($robot),new 
moveback($robot));
    $invoker->perform;
    <<main.pl>>

 ---data---
 moved left
 moved left
 moved front
 moved front
 moved right
 moved right
 moved back
 moved back
 ----------

Iterator 

In a collection class when each element of the collection (i.e. Array, list, tree, etc.) needs to be accessed 
sequentially and in a collection type independent man or an iterator pattern is used. Interfaces provide 
through the pattern is same for all collection classes, can be an array list tree or any other, and it is 
independent of the class internal representation. 

For example a list user should be able to iterate the list in the same manner as an array user. In CD player 
user does not need to worry about in what format songs are stored he just presses the next button in order to 
go to the next song.

     +----------------+            --------       +-----------------+
     |Aggregate       | <--------- |client| ----> |    Iterator     |
     +----------------+            --------       +-----------------+
     |createiterator()|                           | first():object  |
     +----------------+                           | next():object   |
         / \                                      | isdone():boolean|
          –                                       | currentitem():ob|
                                                  |  ject           |
          |                                       +-----------------+
       -----------------                                  / \
       |               |                                   -
    +------------+  +----------+                           |
    |  queue     |  |stack     |                           |
    +------------+  +----------+                           |
    | createitera|  | creaeiter|                           |
    |  tor():iter|  | ator():it|                           |
    |  ator      |  | erator   |                           |
    +------------+  +----------+                           |
         ^              ^             +--------------------------------+
         |              |             |                                |
         |              | +--------------------+      +----------------+
         |              | |   stackiterator    |      | queueiterator  |
         |              | +--------------------+      +----------------+
         |              | |first():object      |      | first():object | | |
         |              | |next():object       |<>..<>| next():object  |
         |              | |isdone():boolean    |  ||  | isdone():object|
         |              | |currentitem():object|  ||  | currentitem():o|
         |              | +--------------------+  ||  |  bject         |
         |              +-------------------------+|  +----------------+
         +-----------------------------------------+



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

121

Code Example
    package aggregate;
    sub new {
    my ($class,$objectref)=@_;
    bless $objectref,$class;
    }
    1;
    <<aggregate.pm>>
    
    package iterator;
    sub new {
    my ($class,$aggregate)=@_;
    bless {AGGREGATE=>$aggregate,INDEX=>0,BEGIN=>0,END=>-1},$class;
    }
    1;
    <<iterator.pm>>
    
    package stack;
    use base qw(aggregate);
    use stackiterator;
    sub new {
    my $class=shift;
    $class->SUPER::new([]);
    }
    sub createiterator {
    my $ref=shift;
    stackiterator->new($ref);
    }
    1;
    <<stack.pm>>
    
    package stackiterator;
    use base qw(iterator);
    sub getfirst {
    my $ref=shift;
    ${$ref->{AGGREGATE}}[$ref->{INDEX}=$ref->{END}];
    }
    sub getnext {
    my $ref=shift;
    ${$ref->{AGGREGATE}}[--$ref->{INDEX}];
    }
    sub end {
    my $ref=shift;
    ($ref->{INDEX} < $ref->{BEGIN})?1:0;
    }
    sub additem {
    my ($ref,$item)=@_;
    print “adding to stack:”,$item,”\n”;
    push @{$ref->{AGGREGATE}}, $item;
    $ref->{END}+=1;
    }
    sub removeitem {
    my $ref->shift;
    print “removing from stack:”,${$ref->{AGGREGATE}}[$ref->{END}],”\n”;
    --$ref->{END};
    }
    1;



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

122

    <<stack.pm>>
    
    package queue;
    use base qw(aggregate);
    use queueiterator;
    sub new {
    my $class=shift;
    $class->SUPER::new([]);
    }
    sub createiterator {
    my $ref=shift;
    queueiterator->new($ref);
    }
    1;
    <<queue.pm>>
    
    package queueiterator;
    use base qw(iterator);
    sub new {
    my $class=shift;
    my $ref=$class->SUPER::new;
    ($ref->{SEGMENTSIZE},$ref->{CURRENTSEGMENTBEGIN},$ref->{CURRENTSEGMENTEND},$ref-
>{SEGMENTINDEX},$ref->{SEGMENTCOUNT},$ref->{SEGMENT})=(5,0,-1,-1,0,[0]);
    $ref;
    }
    sub getfirst {
    my $ref=shift;
    $ref->{SEGMENTINDEX}=$ref->{CURRENTSEGMENTBEGIN};
    ${$ref->{AGGREGATE}}[$ref->{INDEX}=$ref->{BEGIN}];
    }
    sub getnext {
    my $ref=shift;
    if(!(($ref->{INDEX}+1)%($ref->{SEGMENTSIZE}))) {
    ++$ref->{SEGMENTINDEX};
    $ref->{INDEX}=${$ref->{SEGMENT}}[$ref->{SEGMENTINDEX}]*$ref->{SEGMENTSIZE};
    --$ref->{INDEX};
    }
    ${$ref->{AGGREGATE}}[++$ref->{INDEX}];
    }
    sub additem {
    my ($ref,$item)=@_;
    print “adding to queue:”,$item,”\n”;
    if(!(($ref->{END}+1)%($ref->{SEGMENTSIZE}))) {
    ++$ref->{CURRENTSEGMENTEND};
    ${$ref->{SEGMENT}}[$ref->{CURRENTSEGMENTEND}]=$ref->{CURRENTSEGMENTEND} if !defined ${$ref-
>{SEGMENT}}[$ref->{CURRENTSEGMENTEND}];
    $ref->{END}=${$ref->{SEGMENT}}[$ref->{CURRENTSEGMENTEND}]*$ref->{SEGMENTSIZE}-1;
    }
    ${$ref->{AGGREGATE}}[++$ref->{END}]=$item;
    }
    sub removeitem {
    my $ref=shift;
    if(!(($ref->{BEGIN}+1)%($ref->{SEGMENTSIZE}))) {
    ++$ref->{CURRENTSEGMENTBEGIN};
    $ref->{BEGIN}=${$ref->{SEGMENT}}[$ref->{CURRNTSEGMENTBEGIN}]*$ref->{SEGMENTSIZE};
    my $i=0;
    while($i!=$ref->{SEGMENTCOUNT}) {
    ${$ref->{SEGMENT}}[$i]+=${$ref->{SEGMENT}}[$i+1];
    ${$ref->{SEGMENT}}[$i+1]=${$ref->{SEGMENT}}[$i]-${$ref->{SEGMENT}}[$i+1];



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

123

    ${$ref->{SEGMENT}}[$i]-=${$ref->{SEGMEN}}[$i+1];
    ++$i;
    }
    $ref->{CURRENTSEGMENTEND}-=1;
    $ref->{CURRENTSEGMENTBEGIN}-=1;
    }else {
    ++$ref->{BEGIN};
    }
    }
    sub end {
    my $ref=shift;
    ($ref->{END} < $ref->{INDEX})?1:0;
    }
    1;
    <<queueiterator.pm>>
    
    use strict;
    use warnings;
    use stack;
    use queue;
    my $stackiteratorref=new stack->createiterator;
    my $queueiteratorref=new queue->createiterator;
    for my $iterator ($stackiteratorref,$queueiteratorref) {
    $iterator->additem(1);
    $iterator->additem(2);
    $iterator->additem(‘a’);
    $iterator->additem(‘b’);
    $iterator->additem(‘c’);
    $iterator->additem(‘d’);
    $iterator->additem(‘e’);
    for(my $item=$iterator->getfirst;!$iterator->end;$item=$iterator->getnext) {
    print “$item “;
    }
    print “\n”;
    }
    <<main.pl>>

 ---data---

 adding to stack:1
 adding to stack:2
 adding to stack:a
 adding to stack:b
 adding to stack:c
 adding to stack:d
 adding to stack:e
 e d c b a 2 1
 adding to queue:1
 adding to queue:2
 adding to queue:a
 adding to queue:b
 adding to queue:c
 adding to queue:d
 adding to queue:e
 1 2 a b c d e
 ----------



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

124

Mediator 

When a group of entities exists and change in one state effect other makes entities are tightly coupled this way. 
Adding or removing an entity will lead to change in the code of all the entities and when the group is big it is 
difficult to handle this situation. The idea is to introduce a mediator and all separate entities in the group would 
report to the mediator. This makes each entity in the group independent of each other and it is the mediator who 
decides for updating among entities. Telephone exchange (switch) connects N users, whereas connecting each 
other without switch would be practically impossible. Head of a team is actually a mediator.

        +-----------+                              +---------------+
        |dialogbox  |                              |     shape     |
        +-----------+                              +---------------+
        | _menu:menu|  <------------------------<> |clickone():void|
        | _button:bu|                              |enable():void  |
        |  tton     |                              |disable():void |
        | _combobox:|                              +---------------+
        |  button   |                                   / \
        +-----.-----+                                    -
             / \                                         |
             \ /                 +----------------------------------+
              |                  |                                  |
              |          +------------+  +------------+    +-----------+
              |          |   menu     |  |  combobox  |    |  button   |
              |          +------------+  +------------+    +-----------+
              |          | cick():void|  | click():void|   | click():vo|
              |          | enable:void|  | enable():void|  |  id       |
              |          | disable():v|  | disable():void| | enable():v|
              |          |  oid       |  +---------------+ |  oid      |
              |          +------------+         ^          | disable():|
              |                ^                |          |  void     |
              |                |                |          +-----------+
              |                |                |              ^
              |                |                |              |
              +----------------+----------------+--------------+

Code Example
    package dialogbox;
    sub new {
    my $class=shift;
    bless {},$class;
    }
    sub registermenu {
    my ($ref,$shape)=@_;
    $ref->{MENU}=$shape;
    }
    sub registerbutton {
    my ($ref,$shape)=@_;
    $ref->{BUTTON}=$shape;
    }
    sub registercombobox {
    my ($ref,$shape)=@_;
    $ref->{COMBOBOX}=$shape;
    }
    sub informmenu {
    my ($ref,$shape)=@_;
    print “dialogbox::menu clicked id:”,$shape->id,”\n”;
    }
    sub informbutton {



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

125

    my ($ref,$shape)=@_;
    print “dialogbox::button clicked id:”,$shape->id,”\n”;
    }
    sub informcombobox {
    my ($ref,$shape)=@_;
    print “dialogbox::combobox clicked id:”,$shape->id,”\n”;
    }
    1;
    <<dialogbox.pm>>
    
    package shape;
    sub new {
    my ($class,$id,$dialogbox)=@_;
    bless {ID=>$id,MEDIATOR=>$dialogbox},$class;
    }
    sub id {
    my $ref=shift;
    $ref->{ID};
    }
    1;
    <<shape.pm>>
    
    package menu;
    use base qw(shape);
    sub new {
    my ($class,$id,$dialogbox)=@_;
    my $ref=$class->SUPER::new($id,$dialogbox);
    $ref->{MEDIATOR}->registermenu($ref);
    $ref;
    }
    sub click {
    my $ref=shift;
    $ref->{MEDIATOR}->informmenu($ref);
    }
    1;
    <<menu.pm>>
    
    package button;
    use base qw(shape);
    sub new {
    my ($class,$id,$dialogbox)=@_;
    my $ref=$class->SUPER::new($id,$dialogbox);
    $ref->{MEDIATOR}->registerbutton($ref);
    $ref;
    }
    sub click {
    my $ref=shift;
    $ref->{MEDIATOR}->informbutton($ref);
    }
    1;
    <<button.pm>>
    
    package combobox;
    use base qw(shape);
    sub new {
    my ($class,$id,$dialogbox)=@_;
    my $ref=$class->SUPER::new($id,$dialogbox);
    $ref->{MEDIATOR}->registercombobox($id,$dialogbox);
    $ref;



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

126

    }
    sub click {
    my $ref=shift;
    $ref->{MEDIATOR}->informcombobox($ref);
    }
    1;
    <<combobox.pm>>
    
    use strict;
    use warnings;
    use dialogbox;
    use menu;
    use button;
    use combobox;
    my $dialogboxref=new dialogbox;
    new menu(‘menu1’,$dialogboxref)->click;
    new button(‘button1’,$dialogboxref)->click;
    new combobox(‘combobox1’,$dialogboxref)->click;
    <<main.pl>>
 ---data---
 dialogbox::menu clicked id:menu1
 dialogbox::button clicked id:button1
 dialogbox::combobox clicked id:combobox1
 ----------

Arithmetic expression calculation:

                            +--------------+
                            | mexpression  |
               +---------<> +--------------+
               |            | evaluate(exp |
               |            |  ression:stri|
               |            |  ng          |
               v            +--------------+
                                 / \
     +-----------------+          -
     |    mediator     |          |
     +-----------------+          |
     | _mul:multiplier |          |
     | _div:division   |          |
     | _add:addition   |          |
     | _sub:subtraction|          |
     +-----------------+          |
     | evaluate(express|          |
     |  ion):void      |          |
     +---.-------------+          |
        / \                       |
        \ /     +----------------------------------------------+
         |      |             |             |                  |
         | +-----------+  +----------+ +-----------+ +-----------+
         | |multiplier |  | divider  | | subtracter| |   adder   |
         | +-----------+  +----------+ +-----------+ +-----------+
         | | evaluate(e|  | evaluate(| | evaluate(e| | evaluate(e|
         | | xpression)|  | expession| | xpression)| |  xpression|
         | |  :string  |  |  ):string| |  :string  | |  :string  |
         | +-----------+  +----------+ +-----------+ +-----------+
         |        ^             ^             ^             ^
         |        |             |             |             |
         +--------+-------------+-------------+-------------+



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

127

Code Example
    package mediator;
    sub new {
    my ($class,$multiplier,$divider,$subtracter,$adder)=@_;
    my $ref=bless {MULTIPLIER=>$multiplier,DIVIDER=>$divider,SUBTRACTER=>$subtracter,ADDER=>$adde
r},$class;
    map{$_->mediator($ref)} ($multiplier,$divider,$subtracter,$adder);
    $ref;
    }
    sub informmultiplier {
    my ($ref,$expression)=@_;
    $ref->{SUBTRACTER}->evaluate($expression);
    }
    sub informdivider {
    my ($ref,$expression)=@_;
    $ref->{MULTIPLIER}->evaluate($expression);
    }
    sub informsubtracter {
    my ($ref,$expression)=@_;
    $ref->{ADDER}->evaluate($expression);
    }
    sub informadder {
    my ($ref,$expression)=@_;
    $expression;
    }
    sub evaluate {
    my ($ref,$expression)=@_;
    print “expression:”,$expression,”\n”;
    $ref->{DIVIDER}->evaluate($expression);
    }
    1;
    <<mediator.pm>>
    
    package expression;
    sub new {
    my ($class,$operator)=@_;
    bless {operator=>$operator},$class;
    }
    sub mediator {
    my ($ref,$mediator)=@_;
    $ref->{MEDIATOR}=$mediator;
    }
    sub evaluate {
    my ($ref,$expression)=@_;
    while($expression=~/(-?\d+)($ref->{operator})(-?\d+)/) {
    $expression=join(‘’,$`,eval “$1$2$3”,$’);
    }
    $expression;
    }
    1;
    <<expression.pm>>
    
    package multiplier;
    use base qw(expression);
    sub new {
    my $class=shift;
    $class->SUPER::new(‘\*’);



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

128

    }
    sub evaluate {
    my ($ref,$expression)=@_;
    print “multiplier,expression:”,$expression,”\n”;
    $ref->{MEDIATOR}->informmultiplier($ref->SUPER::evaluate($expression));
    }
    1;
    <<multiplier.pm>>
    
    package divider;
    use base qw(expression);
    sub new {
    my $class=shift;
    $class->SUPER::new(‘/’);
    }
    sub evaluate {
    my ($ref,$expression)=@_;
    print “divider,expression:”,$expression,”\n”;
    $ref->{MEDIATOR}->informdivider($ref->SUPER::evaluate($expression));
    }
    1;
    <<divider.pm>>
    
    package subtracter;
    use base qw(expression);
    sub new {
    my $class=shift;
    $class->SUPER::new(‘\-’);
    }
    sub evaluate {
    my ($ref,$expression)=@_;
    print “subtracter,expression:”,$expression,”\n”;
    $ref->{MEDIATOR}->informsubtracter($ref->SUPER::evaluate($expression));
    }
    1;
    <<subtracter.pm>>
    
    package adder;
    use base qw(expression);
    sub new {
    my $class=shift;
    $class->SUPER::new(‘\+’);
    }
    sub evaluate {
    my ($ref,$expression)=@_;
    print “adder,expression:”,$expression,”\n”;
    $ref->{MEDIATOR}->informadder($ref->SUPER::evaluate($expression));
    }
    1;
    <<adder.pm>>
    
    use strict;
    use warnings;
    use multiplier;
    use divider;
    use subtracter;
    use adder;
    use mediator;
    print “result:”, new mediator(new multiplier,new divider,new subtracter,new adder)->evalua



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

129

te(‘1-2+4*3-6/2+8*3-2*70/10’);
    print “\n”;
    print “result:”, new mediator(new multiplier,new divider,new subtracter,new adder)-
>evaluate(‘1+3/3*2-2+6/2/3-2’);
    <<main.pl>>

 ---data---
 expression:1-2+4*3-6/2+8*3-2*70/10
 divider,expression:1-2+4*3-6/2+8*3-2*70/10
 multiplier,expression:1-2+4*3-3+8*3-2*7
 subtracter,expression:1-2+12-3+24-14
 adder,expression:-1+9+10
 result:18
 expression:1+3/3*2-2+6/2/3-2
 divider,expression:1+3/3*2-2+6/2/3-2
 multiplier,expression:1+1*2-2+1-2
 subtracter,expression:1+2-2+1-2
 adder,expression:1+0+-1
 result:0
 ----------

Memento

There are scenario when a class (originator) changes its state and there has to be an option to bring the 
class to certain state that a class had been to in the past. It should support kind of undo operation. The class 
can itself contain all the states it happened to be in the past or a separate opaque class (memento) can be 
introduced to keep the state of the originating class. A caretaker who handles the originator’s behavior 
keeps various states of the originator in opaque memento and when undo operation is required it sets the 
originator’s state to state stored in a particular memento object. For example a simple adder adds two 
numbers and gives the result. There can be a need that the user needs to see previous calculations and in this 
case caretaker would let originator create many mementos of past calculations and when undo is required 
previous mementos is set as new state of the originator. Ministers are mementos for a king’s action and 
decisions and when Required they make king remember the past actions.

    +-------------------+                 +----------------------+
    |    caretaker      |                 |     calculator       |
    +-------------------+                 +----------------------+
    | save(firstnumber: |                 | backup(firstno:int,  | | |
    |  int,secondnumber | <>--+    +----  |  secondno:int):void  |
    |  :int):void       |     |    |      | restore(state:memnto)|
    | firstnumber():int |     |    |      | getresult():int      |
    | secondnumber():int|     |    |      | setfirstnumber(no:int|
    +-------------------+     |    |      |      ):void          |
                              |    |      | setsecondnumber(no:in|
                              |    |      |  t):void             |
                              |    |      +----------------------+
                              |    |         / \
        +----------------+    |    |          -
        |    memento     | <--+    |          |
        +----------------+         |     +----------------+
        | store(firstn   | <-------+     |    intadder    |
        |  o:int,second  |               +----------------+
        |  no:int):void  |               |firstnumber:int |
        | firstno():int  |               |secondnumber:int|
        | sedondno():int |               +----------------+ 
        +----------------+



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

130

Code Example
    package adder;
    sub new {
    my ($class,$firstnumber,$secondnumber)=@_;
    bless {FIRSTNUMBER=>$firstnumber,SECONDNUMBER=>$secondnumber},$class;
    }
    sub add {
    my $ref=shift;
    print “originator(adder)::add firstnumber,secondnumber:”,$_[0],”:”,$_[1],”\n” if scalar @_;
    print “originaator(adder)::add firstnumber,secondnumber:”,$ref->{FIRSTNUMBER},”:”,$ref-
>{SECONDNUMBER},”\n” if !scalar @_;
    (scalar @_)?($ref->{FIRSTNUMBER}=shift)+($ref->{SECONDNUMBER}=shift):$ref-
>{FIRSTNUMBER}+$ref->{SECONDNUMBER};
    }
    sub backup {
    my ($ref,$caretaker)=@_;
    print “originator(adder)::backup firstnumber,secondnumber:”,$ref->{FIRSTNUMBER},”:”,$ref-
>{SECONDNUMBER},”\n”;
    $caretaker->save($ref->{FIRSTNUMBER},$ref->{SECONDNUMBER});
    }
    sub restore {
    my ($ref,$caretaker)=@_;
    print “orgininator(adder)::restore firstnumber,secondnumber:”,$caretaker-
>firstnumber,”:”,$caretaker->secondnumber,”\n”;
    ($ref->{FIRSTNUMBER},$ref->{SECONDNUMBER})=($caretaker->firstnumber,$caretaker-
>secondnumber);
    }
    1;
    <<adder.pm>>
    
    package caretaker;
    my $caretakerref=undef;
    sub caretaker {
    $caretakerref=__PACKAGE__->new if !defined $caretakerref;
    $caretakerref;
    }
    sub new {
    my $class=shift;
    bless {MEMENTOSTACK=>undef,TOP=>-1,INDEX=>-1,MAXCOUNT=>5},$class;
    }
    sub getnext {
    my $ref=shift;
    ${$ref->{MEMENTOSTACK}}[($ref->{TOP}+1)%($ref->{MAXCOUNT})];
    }
    sub get {
    my $ref=shift;
    ${$ref->{MEMENTOSTACK}}[$ref->{INDEX}=$ref->{TOP}];
    }
    sub push {
    my ($ref,$value)=@_;
    print “caretaker,adding memento to queue”,$value->{FIRSTNUMBER},”:”,$value->{SECONDNUMBER},”\n”;
    ${$ref->{MEMENTOSTACK}}[$ref->{INDEX}=$ref->{TOP}=($ref->{TOP}+1)%($ref->{MAXCOUNT})]=$value;
    }
    sub getprevious {
    my $ref=shift;
    ${$ref->{MEMENTOSTACK}}[($ref->{INDEX}==0)?$ref->{INDEX}=$ref->{MAXCOUNT}-1:--$ref->{INDEX}];
    }



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

131

    1;
    <<caretaker.pm>>
    
    package memento;
    use base qw(caretaker);
    sub new {
    my ($class,$firstnumber,$secondnumber)=@_;
    bless {FIRSTNUMBER=>$firstnumber,SECONDNUMBER=>$secondnumber},$class;
    }
    sub firstnumber {
    my $ref=shift;
    (scalar @_)?$ref->{FIRSTNUMBER}=shift:$ref->{FIRSTNUMBER};
    }
    sub secondnumber {
    my $ref=shift;
    (scalar @_)?$ref->{FIRSTNUMBER}=shift:$ref->{SECONDNUMBER};
    }
    sub save {
    my ($ref,$firstnumber,$secondnumber)=@_;
    my $mementoref=$ref->caretaker->getnext;
    if(!defined $ref->{FIRSTNUMBER}) {
    ($ref->{FIRSTNUMBER},$ref->{SECONDNUMBER})=($firstnumber,$secondnumber);
    if(!defined $mementoref) {
    $ref->caretaker->push($ref);
    }else {
    $ref->caretaker->push($mementoref);
    }}else {
    if(!defined $mementoref) {
    $ref->caretaker->push(__PACKAGE__->new($firstnumber,$secondnumber));
    }else {
    $mementoref->firstnumber($firstnumber);
    $mementoref->secondnumber($secondnumber);
    }
    }
    }
    sub previous {
    my $ref=shift;
    $ref->caretaker->getprevious;
    }
    sub get {
    my $ref=shift;
    $ref->caretaker->SUPER::get;
    }
    1;
    <<memento.pm>>
    
    use strict;
    use warnings;
    
    use memento;
    use adder;
    my $adderref=new adder;
    my $caretaker=new memento;
    print “result:”,$adderref->add(10,20),”\n”;;
    print “result:”,$adderref->add(20,30),”\n”;
    $adderref->backup($caretaker);
    print “result:”,$adderref->add(1000,20),”\n”;
    $adderref->backup($caretaker);
    print “result:”,$adderref->add(420,-20),”\n”;



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

132

    $adderref->backup($caretaker);
    $adderref->add(10,-100000000);
    $adderref->restore($caretaker->get);
    print “result:”,$adderref->add;
    <<main.pl>>

 ---data---
 originator(adder)::add firstnumber,secondnumber:10:20
 result:30
 originator(adder)::add firstnumber,secondnumber:20:30
 result:50
 originator(adder)::backup firstnumber,secondnumber:20:30
 caretaker,adding memento to queue20:30
 originator(adder)::add firstnumber,secondnumber:1000:20
 result:1020
 originator(adder)::backup firstnumber,secondnumber:1000:20
 caretaker,adding memento to queue1000:20
 originator(adder)::add firstnumber,secondnumber:420:-20
 result:400
 originator(adder)::backup firstnumber,secondnumber:420:-20
 caretaker,adding memento to queue420:-20
 originator(adder)::add firstnumber,secondnumber:10:-100000000
 orgininator(adder)::restore firstnumber,secondnumber:420:-20
 originaator(adder)::add firstnumber,secondnumber:420:-20
 result:400
 ----------

Strategy

A behavior of a class may contain static behavior and changeable behavior. Instead of hardcoding the 
changeable behavior, it is kept abstract data type followed by getting the implementation of abstract at 
runtime. This kind of abstract data type is addressed through strategy pattern. Abstract data type, then 
subclassed into various implementations, which is passed to the main class at run time, making the 
possibility to change the behavior at run time. I.e. an event manager when receives an event it passes it 
through an algorithm which parses the event structure and takes necessary action, i.e. logging it, raising 
alarm, etc. This algorithm now can be placed in strategy abstract type so that it may vary and event manager 
code remain unchanged leading to new and better algorithm run in this fashion. A person plans (makes 
strategy) for his kid’s life that at a particular age, he has to go to school and then he has to take a job then 
marriage... But he does not know the names.

  -----    +---------------+                 +-------------------+
  | c | -> |   context     |  <>-----------> |    strategy       |
  | l |    +---------------+                 +-------------------+
  | i |    |strat:strategy |                 | takeaction(eventar|
  | e |    +---------------+                 |  g:event):void    |
  | n |    | sethandler(str|                 +-------------------+
  | t |    |  at:strategy  |                          / \
  -----    | newevent(event|                           -
           |  :event):void |                           |
           +---------------+                           |
                                                       |
                                    +---------------------------------+
                                    |                                 |
                             +-----------------+     +-----------------+
                             |alarmeventhandler|     | smseventhandler |
                             +-----------------+     +-----------------+
                             | takeaction(event|     | takeaction(event|
                             |  arg:event):void|     |  arg:event):void|
                             +-----------------+     +-----------------+



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

133

Code Example
    package eventmanager;
    sub new {
    my ($class,$handler)=shift;
    bless {STRAT=>$handler},$class;
    }
    sub sethandler {
    my ($ref,$handler)=@_;
    my $oldhandler=$ref->{sTRAT};
    $ref->{STRAT}=$handler;
    $oldhandler;
    }
    sub handleevent {
    my ($ref,$event)=@_;
    $ref->{STRAT}->takeaction($event);
    }
    1;
    <<eventmanager.pm>>
    
    package eventhandler;
    sub new {
    my $class=shift;
    bless {},$class;
    }
    1;
    <<eventhandler.pm>>
    
    package loggerhandler;
    use base qw(eventhandler);
    sub takeaction {
    my ($ref,$event)=@_;
    print “loggerhandler, logging to a file, event:”,$event,”\n”;
    }
    1;
    <<loggerhandler.pm>>
    
    package smshandler;
    use base qw(eventhandler);
    sub takeaction {
    my ($ref,$event)=@_;
    print “smshandler, sending sms, event:”,$event,”\n”;
    }
    1;
    <<smshandler.pm>>
    
    use strict;
    use warnings;
    
    use loggerhandler;
    use smshandler;
    use eventmanager;
    my $eventmanager=new eventmanager;
    $eventmanager->sethandler(new loggerhandler);
    $eventmanager->handleevent(“server down”);
    $eventmanager->sethandler(new smshandler);
    $eventmanager->handleevent(“server down”);
    <<main.pl>>



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

134

 ---data---
 loggerhandler, logging to a file, event:server down
 smshandler, sending sms, event:server down
 ----------

Template Method

As per the definition of template, a template draws an architecture of something and let implement or 
implement the architecture from his perspective. A template is kind of a starting point. Similarly, template 
method draws the layout of behaviors. The class containing the template method later subclasses in order 
to fill the architecture to some real examples. For example, someone writes an algorithm to sort an array or 
list. Sorting can happen in at least two ways ascending and descending. Rather than mentioning these in the 
algorithm he just writes the architecture and leave a hook point where ascending and descending specific 
codes in specific subclasses would make it two separate algorithms ascending sorting and descending 
sorting. A person can work on one task or two or three, but if he needs to work on 100s of tasks, then either 
he cannot, or he has to find a common thing among them so that they would differ in very few points.

        ---------           +---------------+
        |client | ------->  |     qsort     |
        ---------           +---------------+
                            | sort(a:list):v|
                            |  oid          |
                            | compare(a:int,|
                            |  b:int):int   |
                            +---------------+
                                    / \
                                     _
                                     |
                 +-------------------------------+
                 |                               |
            +---------------+              +---------------+
            |qsortascending |              |qsortdecending |
            +---------------+              +---------------+
            | compare(a:int,|              | compare(a:int,|
            |  b:int):int   |              |  b:int):int   |
            +---------------+              +---------------+

Code Example
    package qsort;
    sub new {
    my $class=shift;
    bless {},$class;
    }
    sub sort {
    my ($ref,@a)=@_;
    print “array to be sorted:”,map(“$_,”,@a),”\n”;
    $ref->sorti(0,$#a,\@a);
    print “sorted array:”,map(“$_,”,@a),”\n”;
    }
    sub sorti {
    my ($ref,$m,$n,$a)=@_;
    if($m<$n) {
    $i=$m;$j=$n+1;
    do {
    do {
    $i=$i+1;
    }while $i<=$n && $ref->compare1(${$a}[$i],${$a}[$m]);
    do {



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

135

    $j=$j-1;
    }while $ref->compare2($$a[$j],$$a[$m]);
    if($i<$j) {
    $t=$$a[$i];$$a[$i]=$$a[$j];$$a[$j]=$t;
    }
    }while $i<$j;
    $t=$$a[$j];$$a[$j]=$$a[$m];$$a[$m]=$t;
    $ref->sorti($m,$j-1,$a);
    $ref->sorti($j+1,$n,$a);
    }
    }
    1;
    <<qsort.pm>>
    
    package qsortascending;
    use base qw(qsort);
    sub compare1 {
    my ($ref,$a,$b)=@_;
    ($a<$b)?1:0;
    }
    sub compare2 {
    my ($ref,$a,$b)=@_;
    ($a>$b)?1:0;
    }
    1;
    <<qsortascending.pm>>
    
    package qsortdescending;
    use base qw(qsort);
    sub compare1 {
    my ($ref,$a,$b)=@_;
    ($a>$b)?1:0;
    }
    sub compare2 {
    my ($ref,$a,$b)=@_;
    ($a<$b)?1:0;
    }
    1;
    <<qsortdescending.pm>>
    
    use strict;
    use warnings;
    
    use qsortascending;
    use qsortdescending;
    new qsortascending->sort(1,5,3,7,2,10,20,15,17,11);
    new qsortdescending->sort(1,5,3,7,2,10,20,15,17,11);
    <<main.pl>>

 ---data---
 array to be sorted:1,5,3,7,2,10,20,15,17,11,
 sorted array:1,2,3,5,7,10,11,15,17,20,
 array to be sorted:1,5,3,7,2,10,20,15,17,11,
 sorted array:20,17,15,11,10,7,5,3,2,1,



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

136

Summary
In this article various aspects of design patterns are discussed with addition of placing the examples in Perl. 
Article is written in a wa that it would be equally useful to programers in other languages. I addition to 
elaborate examples emphasis is also given in general desig concepts. This article discusses GOF 23 design 
patterns based on creational, structural and behavioural subpatterns. All three types of patterns are provided 
throgh more indepth view as how they are distributed,i.e creational pattern is distributed among new 
object creation and cloning existing object whereas structural patterns are distributed among inheritance, 
composition and inheritance+composition and behavioural patterns are distributed among recursive and non 
recursive way. These design patterns also cover the generic programming styles.



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

137

Technical Interviewing Technique: 
Looking for an Intuitive Narrative
by Soumen Sarkar and Jeff Edmonds

I wanted to write this article to contemplate upon a seemingly vexing problem: In a technical 
interview, which is a limited contract opportunity, how does the interviewer measure 
candidate’s power of reason and skill of communication on a rationalistic and intuitive basis? 

We came to the conclusion that the whole thing depends upon:

• 	 Candidate’s preparedness (technical and communication)

• 	 Interviewer’s preparedness (interviewing and communication)

• 	 Luck (both on the part of candidate and interviewer)

We think we have a good technical problem, which we hope to be able to do a convincing articulation of the above three.

The Problem

You’re standing in front of a 100-story building with two identical 
bowling balls. You’ve been tasked with testing the bowling balls’ 
resilience. The building has a stairwell with a window at each story from 
which you can (conveniently) drop bowling balls. To test the bowling 
balls you need to find the first floor at which they break. It might be the 
100th floor or it might be the 37th floor, but if it breaks somewhere in the 
middle you know it will break at every floor above. If a ball is not broken, 
please reuse the ball. Devise an algorithm, which guarantees you’ll find 
the first floor at which one of your bowling balls will break. You’re 
graded on your algorithm’s worst-case running time.

Interview Structure
This article will propose a guided structure for technical interview in the backdrop of this particular question. 
The guidance from the interviewer, in my humble opinion, is quite crucial so that the interviewee’s power 
of reason and communication skill can be drawn out and assessed while the interviewer retains control of 
the engagement experience. In other words, the interviewer cannot sit back and relax! We are proposing the 
following structure:



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

138

• 	 Interviewer identifies the constraint of two bowling balls (space complexity constraint) and states that s/he 
will relax this constraint initially with gradual tightening

• 	 Interviewer identifies the constraint of the number of tries (time complexity constraint) and states that s/he 
is looking for minimizing worst cases

• 	 The interviewer states that the interview is interactive and advises the candidate to listen carefully and ask 
questions

• 	 The interviewer then states that following four cases will be considered in an interactive manner:
Case # Space Complexity Worst Case Time Complexity

Case 1 Can use only one ball How many tries?
Case 2 Can use as many balls How many tries?
Case 3 Can use only two balls How many tries?
Case 4 Can use only three balls How many tries?

One Ball Case
One ball case is quite important due to following reasons: 

• 	 cebreaker (interviewee starts talking about a trivial case) 

This is a trivial case. Since the algorithm must work for all floors, the only option is to try floor 1 to 100 one-
by-one. This also removes any irrelevant details from a candidate’s mind like to repeat dropping may make 
the ball brittle. 

Let’s assign 10 points out of 100 for this case.

As Many Balls Case
Now that, candidate is talking, let’s try to engage on as many balls case. Does the candidate say 100 balls, 
or 50 balls or something less? If the candidate does not zero on binary search algorithm within five minutes, 
it is not looking good! Binary search is quite obvious – from a divide and conquer point of view. First drop 
one ball from floor 50 (= 100/2). If it breaks, then use other balls for lower half (floors 1 through 49) using 
divide and conquer to halve the problem size at each drop. If the ball does not break then try upper half 
(floors 51 to 100) using divide and conquer to halve the problem size at each drop. If the candidate gets 
binary search then you may ask why binary search is applicable to this problem? What is sorted (since binary 
search is applicable on sorted data structure)?

So the answer is, we need maximum ceil (log2 (100)) = ceil (6.x) = 7 balls/tries. Also note that there is no 
separation of time complexity (number of tries) and space complexity (number of balls) in this case.

Time Complexity = Space Complexity = 7

Let’s assign 40 points out of 100 for this case. So if the candidate has made till this point, s/he is half way 
through (10 + 40 = 50 points out of 100).

Two Balls Case
It is time to separate space and time complexity. We constrain the space complexity to two (balls). It should 
be obvious that time complexity is more than two – come on there are 100 floors! Actually, it has to be at 
least seven (see previous section). Ask the candidate on the minimum bound of time complexity in this case 
and look for seven. If the candidate chooses a step size of 14 then there needs to be at least 7 tries (100/14 = 
7. X) till the first ball breaks or it is certain that it will break. Let’s take an example; let’s say the ball breaks 



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

139

at 100 (the topmost floor). In this case, there will be 7 tries (14, 28, 42,…, 84, 98) and then the candidate can 
try 99 and 100 ==> total 7 + 2 = 9 tries. If the ball breaks in 97, then the number of tries = 7 (the first ball 
breaks in floor 98) + 13 (try 2nd ball 85, 86,…, 96, 97) = 20. At this point the candidate could recognize that 
there are two variables at play:

• 	 Interval size

• 	 Number of intervals

The following equation may help:

(Interval size) x (Number of intervals) >= 100

For example, if the interval size is 4, then we will need 25 intervals (not good). On the other hand, the 
interval size of 25 is not desirable as well since if the first ball breaks, then we do need to try linearly within 
the last interval. We have a situation where the product of two variables is fixed (= 100) and we need to 
minimize the sum of the two variables. This is achieved by setting the two variables equal to each other: 

Interval size = Number of intervals = N

Then we have,

N x N = 100

→ N = 10 (square root of 100)

A quick calculation shows that maximum number of tries is 10 + 9 = 19. Checking back, if the answer is 99 
then we lose the first ball at floor 100 (10, 20,…, 100) and then we need to try linearly (91, 92,…, 99) with 
the remaining balls.

Let’s assign 20 points out of 100 for this sub-case. If the candidate has made out this far, then the score is at 
70 (10 + 40 + 20).

Two Balls Case (Optimized)
At this point, the candidate could be told that s/he did quite well. However, number of tries could be 
improved through a better strategy. Assuming the optimum number is N, how can we derive it? At this point, 
the narrative could change. We do not know how the candidate will respond. May be this problem is already 
known to the candidate? However, this complication does not change the intent of this article. The intent of 
this article is to show how a multi stage problem (with increasing level of sophistication) could possibly used 
to assess interviewee’s critical thinking ability. 

Getting back to the problem... this is what we know about calculating N. Let’s start with our initial assertion 
that we have a strategy of N ball drops. Let’s forget for a moment that we have 100 floors. Let’s say we have 
N floors – what is the best strategy with the two balls? We think this should be obvious – drop the first ball 
from floor N. Lets say it breaks – in that case, next ball can be used linearly (one-by-one) for floors 1 to (N 
-1). So if the ball breaks at floor N or lower, we are still maintaining the logical consistency that we have a 
strategy of N ball drops.

Invariant → 1 + (N – 1) = N

What happens if the ball does not break? Well, in that case we can do the second drop from the floor (N + (N – 
1)). Why are we going (N – 1) floor above floor N? This is because at this point we have used two drops and if 
the ball breaks at floor (N + (N – 1)), we still can use remaining (N – 2) tries to check intermediate floors.

Invariant → 1 + 1 + (N – 2) = N



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

140

Again, we are still maintaining the logical consistency that we have a strategy of N ball drops. This act 
maintaining of the initial assertion that we have a strategy of N drops and not violating this assumption is 
called Maintaining The Invariant (the heart of any algorithm). A crucial thing to observe now is. 

We are going higher (from Nth floor to N + N – 1 floor) while maintaining the invariant that maximum number 
of tries is <= N:

Loop Invariant
Proving Your Algorithms

• 	Start Small (initial condition)
• 	Make Progress (N è N+1 or N → N-1)
• 	Maintain Invariant

How long this can continue? Well, this can continue till the sequence comes down to last term 1:

N ((N – 1) on top of N ((N – 2) on top of (N + (N – 1)) (... 3 on top of previous (2 on top of previous (1 on 
top of previous. 

If we add all these intervals, at the end, we must reach the 100th floor. So we have the following equation:

N + (N – 1) + (N – 2) + ... + 3 + 2 + 1 >= 100

→ N (N + 1) / 2 >=100
→ N = 13.X
→ N = 14

Let’s assign 30 points out of 100 for this sub-case. Checking back for floor 100 case, we go up to floor 99 in 11 
tries (14 + 13 + 12 + 11 + 10 + 9 + 8 + 7 + 6 + 5 + 4) and the ball break at floor 100 (total 12 (11 + 1) tries.

If the candidate has made out this far, then the score is at 100 (10 + 40 + 20 + 30). Full score!!

Three Balls Case
Whew! This has been quite a journey. However, we do not need to stop here. Let’s consider 20-point bonus question:

What If You Can Drop Three Balls? 
My response would be to use one ball to halve the problem size. Drop one ball from 50th floor and expect 
it to break. If it breaks, then use other two balls for floors 1 through 49 with two balls optimized algorithms 
described in the previous section. In that case:

N (N + 1) / 2 = 49

→ N = 9. X

→ N = 10

Counting the first ball drop (to halve the problem space), we have to add one:

N = 10 + 1 = 11 

If the ball does not break, continue using the third ball to halve the problem size and when the third ball 
breaks, use other two balls as per two-ball-optimized algorithm. At this point, it is quite evident what to do 
with four or five balls. For example, for four balls, the answer is N = 7 + 2 = 9. If the candidate gets this as 
well then s/he gets 120 (full score+ 20 bonus points). 



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

141

This situation is screaming for the candidate to be hired if the narrative appeals to both logic and feeling. The 
art of knowing what the candidate knows takes us to the next section. 

Objective Epistemology by Ayn Rand
There is a branch of philosophy on pondering the business of knowing: Objective Epistemology. Ayn Rand 
published Introduction to Objectivist Epistemology, a monograph on the Objectivist theory of concepts in 1967.

Objective Epistemology by Ayn Rand

How do we know what we know? Is reason a reliable source of knowledge – or is it superseded by mystical 
revelation or emotional intuition? Can we be certain about our knowledge – or must we always remain in doubt?

Does the candidate demonstrate an intuitive pathway to his/her knowledge? Does the candidate work with a 
mind map of complexity tradeoff, loop invariant, problem size variation, back checking, quick calculation etc.

For example, consider this case: Candidate does very well till score 100 (two ball case) but cannot do the 
three ball case (20 bonus points). What does this mean? Does the candidate know the problem, but s/he 
cannot tackle a simple variation?

Applying Ayn Rand to Tech Interview

How do we know what the candidate knows?
Remember that the narrative must feel close to heart – the whole process should appeal to the 
interviewer. The authenticity of the interaction and engagement should stand out.

Where is this Going?
So far, this article has been about how to think about the algorithm (making progress while maintaining 
invariant). Let us now strip all algorithmic thinking from this article. What else remains? This is what we think 
this article has besides algorithm:

• 	 Structuring Interview

• 	 Problem Design

• 	 Having an objective philosophy (abstract architecture of engagement)

This is my point besides algorithms or beyond technical:

Conducting a good technical interview is not easy!

Thought leadership needs to come from the interviewer to create a platform or high potential for interviewer 
to perform. This creativity from interviewers is needed since we are engaging in human interaction.

Other Interview Problems
Before looking for other similar problems, let us look at the design of this problem: 

• 	 Trade off space complexity with time complexity

• 	 Increasing level of sophistication

• 	 Natural (not contrived) description



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

142

A problem with space-time tradeoff is by definition computationally elegant (evidence is Turing Machine or 
Computer Architecture). Increasing the level of sophistication is needed for structuring interview. A problem 
described in terms of physical setting (100 story building, dropping balls) requires the candidate to model the 
problem and analyze the solution in that model space. So if you look for another interview problem, please 
keep these three attributes in mind.

Conclusion
We will conclude by going back to introduction. We said, the success depends on three factors:

• 	 Candidate’s preparedness (technical and communication)

• 	 Interviewer’s preparedness (interviewing and communication)

• 	 Luck (both on the part of candidate and interviewer)

Hopefully, we could articulate on item 1 and 2 above. We all need luck since several things need to line 
up in order to make a good hire in today’s competitive job market for software engineers. Good luck with 
your interview!

References
• 	 Blog Post: Interview Questions: Two Bowling Balls. Jesse Farmer on Tuesday, April 15, 2008, http://20bits.com/ar-

ticle/interview-questions-two-bowling-balls, This blog post has a different take on the same problem.
• 	 Book: How to Think About Algorithms, Professor Jeff Edmonds, http://www.cambridge.org/us/academic/subjects/

computer-science/algorithmics-complexity-computer-algebra-and-computational-g/how-think-about-algorithms
• 	 There are many algorithm texts that provide lots of well-polished code and proofs of correctness. This book is not one 

of them. Instead, this book presents insights, notations, and analogies to help the novice describe and think about al-
gorithms like an expert. By looking at both the big picture and easy step-by-step methods for developing algorithms, 
the author helps students avoid the common pitfalls. He stresses paradigms such as loop invariants and recursion to 
unify a huge range of algorithms into a few meta-algorithms. Part of the goal is to teach the students to think abstract-
ly. Without getting bogged with formal proofs, the book fosters a deeper understanding of how and why each algo-
rithm works. These insights are presented in a slow and clear manner accessible to second- or third-year students of 
computer science, preparing them to find their own innovative ways to solve problems.

• 	 Book: Introduction to objective epistemology, Ayn Rand, http://en.wikipedia.org/wiki/Introduction_to_Objectivist_
Epistemology

• 	 The majority of the book is Rand’s summation of the Objectivist theory of concepts and solution to the problem of 
universals. An additional essay by Peikoff discusses the analytic–synthetic distinction. A second edition published 
in 1990 includes transcripts of a discussion session Rand conducted on epistemology.

About the Authors
Soumen Sarkar is a Senior Technical Product Manager in Platform team of WalmartLabs where he 
manages several products based on frameworks that operate in a high-scale, distributed, multi-tenancy 
private cloud environment. Before WalMartLabs, Soumen worked in high scale platforms with Akamai, 
Nokia, Yahoo and eBay. He graduated from Indian Institute of Technology (IIT) with a masters in 
Electrical Engineering. E-mail: soumen.sarkar@gmail.com.

Professor Jeff Edmonds is at the Theory Group of Department of Computer Science & Engineering, York 
University. Jeff Edmonds received his Ph.D. in 1992 at the University of Toronto in theoretical computer 
science. His thesis proved that certain computation problems require a given amount of time and space. He 
did his post doctorate work at the ICSI in Berkeley on secure multi-media data transmission and in 1995 
became an Associate Professor in the Department of Computer Science at York University, Canada. He 
has worked extensively at IIT Mumbai, India, and University of California San Diego. He is well published 
in the top theoretical computer science journals on topics including complexity theory, scheduling, proof 
systems, probability theory, combinatorics, and, of course, algorithms.

http://20bits.com/article/interview-questions-two-bowling-balls
http://20bits.com/article/interview-questions-two-bowling-balls
http://www.cambridge.org/us/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/how-think-about-algorithms
http://www.cambridge.org/us/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/how-think-about-algorithms
http://en.wikipedia.org/wiki/Introduction_to_Objectivist_Epistemology
http://en.wikipedia.org/wiki/Introduction_to_Objectivist_Epistemology


THE LATEST INNOVTIVE METHODS IN PROGRAMMING

143

A Natural Programming Method. 
Programming with Natural Language
by Tsun-Huai Soo from Taiwan

Are English and C different languages? Yes, the former is a natural language, and the latter 
is a computer language. Do they share something in common? Yes, they do, they are both 
logical languages. Since they are both logical languages, why don’t we just write English text 
to run a computer? Why do we program a computer with a computer language rather than a 
natural language? In the following text we will be using natural language to program. When 
we refer to characters, we mean Hanji, aka Kanji in Japanese or Hanja in Korean,  
and Kana, Hangul. Characters are romanized when present in following text. One cell of  
a lookup table holds a definition for the table key. A definition is a language element such  
as a statement, a declaration, and so on.

Below is a dictionary for terms we use in the following paragraphs.
Term Meaning
Hangul syllabic blocks of letters as Korean characters
Hanja Chinese characters
Hanji Chinese characters
Japanese language a language using Kanji, Hirakana, and Katakana
Kana syllabic Japanese characters known as Hirakana and Katakana
Kanji Chinese characters
Korean language a language using Hangul and Hanja
Taiwanese language a language using Hanji and Latin alphabet

Below is another dictionary for the characters we use in the following paragraphs.
Character Meaning
ÌN v. to print
LIO̍K v. to record, n. records
Character Meaning
SOK v. to speed up
TSUÁN v. to transfer, n. transfers

Programming with Natural Language
Let’s have a look at the example code before diving into the details. Below is a lookup table:

LIO̍K: def record end
   ÌN: puts “a short example”; puts “This is a longer example.”

The table has two Hanji table keys. For one of the table keys LIO̍K, which means “to record”, it has one 
definition “def exemplify end.” For the other table key ÌN, which means to print, it has two definitions.  
One is puts “a short example,” the other is puts “This is a longer example.” They are separated by  
a semicolon. We can then compose LIO̍K and ÌN to form a phrase “LIO̍ K ÌN.” Any two given characters 
can be combined together and remain syntactically correct. No declension or conjugation is required. 
The pronunciation does change but we don’t cover this topic here. Below is the combined phrase and its 
correspondent code snippet:



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

144

LIO̍ K ÌN
def record
   puts “This is a longer example”
end

Why is only one definition of ÌN is combined with LIO̍K’s definition? The selection of one of the definitions 
is regulated by a lookup rule as shown below:

LIO̍K.ÌN:0.2

The rule says, when ÌN is appended after LIO̍K, the 2nd definition of ÌN is selected and 0 means “don’t care” 
for LIO̍K. And why is ÌN nested in LIO̍K? Because the combination rule for LIO̍K and ÌN is as following:

   LIO̍K > ÌN

A Greater Than symbol can mean the 1st character nest the 2nd one.

The Ambiguity
A character can have more than one definition when it is composed in a sentence. The same rule holds true for an 
English word. The above code snippets are an unambiguous example. Here is an ambiguous English example:

   The house can be bought for 10 dollars or 1 million dollars.

The subject “the house” has 2 meanings. For 10 dollars it means a toy house. For 1 million dollars it means a 
concrete house. The lookup table for this English sentence is shown as below:

      The house: acquire(theToyHouse); acquire(theConcreteHouse);
      10 dollars: pay(10);
      1 million dollars: pay(1000000);
   can be bought for: void buy() {}

The lookup rule is as following:

   The house.10 dollars:1.0
The house.1 million dollars:2.0

The first definition of “The house” will be selected for 10 dollars. The second definition of “The house”  
will be selected for 1 million dollars. We would then have 2 meanings for this sentence. One is “The toy 
house can be bought for 10 dollars.” The other is “The concrete house can be bought for 1 million dollars.” 
The combination rules is as following:

void buy () { 
   acquire(theToyHouse); 
   pay(10);
   acquire(theConcreteHouse);
   pay(1000000);
}

“can be bought for” will nest all other statements, which is presented by a Greater Than symbol. There are 
no combination rules set for others words in the sentence, so sequential combination is assumed for the other 
4 statements:

   can be bought for >



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

145

Not Polymorphic
Polymorphism is a feature of object-oriented programming. Polymorphism allows an object of a derived class  
to be passed to a polymorphic function which accepts a reference to its base class. The is-a or kind-of relationship 
is guaranteed through inheritance of class. Thus we say the derived class is substitutable for base class.

The method has nothing to do with polymorphism. It does compose polymorphic code, but it is not involved 
in dynamic binding. When program code is composed, we are also composing a natural phrase or sentence in 
parallel. We may as well use the literal meaning of is-a or kind-of relationship to refer to the polysemy  
or monosemy of a word or character. The relationship is then obviously not guaranteed through inheritance 
of class, but through polysemy or monosemy of a word or character.

Another Perspective of Code
The method is not intended to replace computer language. In fact, it provides a new perspective of source code.

When we write program in a traditional way, firstly a thought or idea is formed in our brain.  
We then break down the thought or idea into logical units. The process of breaking down the thought or idea 
is mostly conducted by induction and deduction. The logical units, such as function calls, variables, or class 
declarations, are constructed and organized into a working program. Then this well composed program code 
is ready to be parsed, interpreted or compiled, and then executed.

From another perspective of source code, we can break it up into statements. Each statement in a program 
code is composed in such a way that it forms a nested or sequential combination with previous or next 
statement. Given that, each statement can be represented by a word or character. We try to make it easier  
to understand by assigning only one word or character to each statement, a statement could be represented  
by a couple of words or characters though. We can then have a sequence of words or characters, which 
should be in itself a phrase or sentence of natural language.

Not a Mere Translation
A computer language is made of a fixed set of keywords and punctuations. Furthermore the keywords of 
main stream computer languages are all English words. There have been efforts made to develop  
non-English-based computer languages. They are, however, not widely used all over the world.  
The non-English-based computer languages have non-English keywords. They are suitable for those 
programmers whose mother tongues are not English.

Do English-based and non-English-based computer languages have something in common? Yes,  
they are all logical languages. A few of them are mere translations from existing computer languages.  
By translation I mean the keywords are translated from English- based computer languages.

The method is not a mere translation from any computer languages. As the title suggests, a programming 
method has to be operable. We can operate the method to write computer programs. In other words, we write 
computer programs via this method.

The method is also not a Text Entry Method/Input Method. A text entry method is just a software tool we use to 
generate a sequence of words or characters by typing on keyboard. The generated sequence of words or characters 
will then be used by the method. The method can sure co-work with non-English-based computer languages.

Reducing Barriers to Entry
The method is a step further from computer language to human beings. It intermediates between computer 
language and programmers. Since it intermediates, there has to be a mechanism for it. The words or phrases 
we type in natural language will be mapped to certain statements in computer language via this mechanism. 
Since we type in natural language, we understand the source code through natural lexicon and sentences. 



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

146

Since we can understand computer language through natural language, we definitely reduce the entry 
barriers to computer languages.

When we assign a word or character to a statement, the word or character itself can be regarded as a 
comment to the statement. It may not be an elaborate one, but it could just co- exist with source code 
comments. They can refer to each other.

Adaptive Design
When we assign a set of statements to a word or character, what we are actually doing is providing options to it. 
One of the provided options will be selected according to the context of a natural language phrase or sentence. 
In other words, the action of selecting means adapting to the context. If the context changes, the selection 
changes. When code can be adaptive to the context, it can be more flexible and responsive to the context.

We can view source code as 2 parts in terms of adaptation, one part is adaptive and the other is unadaptive. 
Where does adaptation come from? A software program may be fitted into a variety of hardware. A software 
program may be even used by different users under different conditions. An adaptive software program can 
be responsive to the context with the support of its unadaptive program core. The adaptive part of software 
program makes the unadaptive part flexible and responsive, and the unadaptive part of software program 
provides core functionality to the adaptive part and support it.

Let’s add a new entry TSUÁN to the lookup table:

   LIO̍ K: def record end
TSUÁN: def transfer end
      ÌN: puts “a short example”; puts “This is a longer example.”

Add a lookup rule like this:

   TSUÁN.ÌN:0.1

And add a combination rule like this:

   TSUÁN > ÌN

We can hence get the code snippet by writing a phrase TSUÁN ÌN:

TSUÁN ÌN
def transfer
   puts “a short example”
end

It is obvious that we switch the meaning of ÌN by replacing LIO̍K with TSUÁN, so that ÌN is adaptive and 
responsive to the changing context of ÌN.

We can also add unadaptive code to the snippet. Provided the character SOK means to speed  
up the string-printing routine “puts”, we can add a new entry SOK to the lookup table:

   LIO̍K: def record end
TSUÁN: def transfer end
      SOK: speedUp
         ÌN: puts “a short example”; puts “This is a longer example.”

And add 2 entries of combination rules:

LIO̍ K > SOK
TSUÁN > SOK



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

147

Hence for the 2 phrases LIO̍ K SOK ÌN and TSUÁN SOK ÌN, we have their relative code snippets:

LIO̍ K SOK ÌN 
def record 
   speedUp
   puts “This is a longer example.”
end

and

TSUÁN SOK ÌN 
def transfer speedUp
   puts “a short example”
end

SOK is therefore the unadaptive part of the code.

Co-working with Existing Computer Languages
The method doesn’t replace existing computer language. Natural language will be co- working with 
computer language. The operations applied on natural languages will be reflected on the combinations of 
statements of computer languages. The following are examples for the method to co-work with different 
programming languages, such as the lookup table for Python:

   LIO̍ K: def record(): TSUÁN: def transfer():
   SOK: speedUp();
      ÌN: print ‘python code’; print ‘longer python code’

The Python code snippet for the phrase TSUÁN SOK ÌN:

TSUÁN SOK ÌN 
def transfer(): 
   speedUp();
   print ‘python code’

The lookup table for C:

   LIO̍ K: void record(){} 
TSUÁN: void transfer(){}
   SOK: speedUp();
      ÌN: printf(“c code\n”); printf(“longer c code\n”);

The C code snippet for the phrase TSUÁN SOK ÌN:

TSUÁN SOK ÌN 
void transfer(){ 
   speedUp();
   printf(“c code”);
}

The lookup table for Swift:

   LIO̍ K: func record() {} 
TSUÁN: func transfer() {}
   SOK: speedUp()
      ÌN: println(“swift code”); println(“longer swift code”)



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

148

The Swift code snippet for the phrase TSUÁN SOK ÌN:

TSUÁN SOK ÌN 
func transfer(){ 
   speedUp()
   println(“swift code”)
}

The lookup table for XML Markup languages:

   LIO̍ K: <records> </records> 
TSUÁN: <transfers> </transfers>
   SOK: speedy xml text.
      ÌN: xml text; longer xml text

The XML code snippet for the phrase TSUÁN SOK ÌN:

TSUÁN SOK ÌN
<transfer>
   speedy xml 
   text. xml text
</transfer>

Not a Programming Paradigm
The method can be applied to existing programming paradigms, being it functional, procedural, or object-
oriented. Given a code snippet, it can be parsed into 2 types of combination. One type is nested combination, 
and the other type is sequential combination. In the example of C language, a for-loop can enclose a couple 
of statements. We can say for- loop is the nesting statement and the enclosed statements are the nested 
statements. In the example of a function definition, the function name and its return type are the nesting 
statement and the function body is the nested statement. The next one is sequential combination.  
When 2 statements are aligned with the same indentation, we say they form a sequential combination. 
 For example, when 2 function calls are aligned, we say they are sequential.

The method is not a new programming paradigm. In other words, a programming method is not  
a programming paradigm. The method can also be applied to any newly invented paradigms.

The lookup table for Object-oriented paradigm:

   LIO̍ K: void record (PrintingObject prnObj) {} 
TSUÁN: void transfer (PrintingObject prnObj) {}
   SOK: speedUp();
      ÌN: prnObj.Print(); prnObj.PrintLonger();

The Object-Oriented code snippet for the phrase TSUÁN SOK ÌN:

TSUÁN SOK ÌN
void transfer(PrintingObject prnObj){
   speedUp();
   prnObj.Print();
}

The lookup table for Scripting paradigm:

   LIO̍ K: function record(){} TSUÁN: function transfer(){}
   SOK: speedUp();
      ÌN: alert(‘javascript code’); alert(‘longer javascript code’)



THE LATEST INNOVTIVE METHODS IN PROGRAMMING

149

The Scripting code snippet for the phrase TSUÁN SOK ÌN:

TSUÁN SOK ÌN 
void transfer(){ 
   speedUp();
   alert(‘javascript code);
}

The lookup table for Functional paradigm:

   LIO̍ K: (defun record ()) 
TSUÁN: (defun transfer())
   SOK: (funcall speedup 10)
      ÌN: (format t “lisp code”); (format t “longer lisp code”)

The Functional code snippet for the phrase TSUÁN SOK ÌN:

TSUÁN SOK ÌN 
(defun transfer() 
   (funcall speedup 10)
   (format t ”lisp code”)
)

The lookup table for Declarative paradigm:

   LIO̍ K: #records {} 
TSUÁN: #transfers {}
   SOK: transition: width 10s;
      ÌN: background-color: #ffffff; background-color: #000000

The Declarative code snippet for the phrase TSUÁN SOK ÌN:

TSUÁN SOK ÌN
#transfers {
   transition: width 10s;
   background-color: #ffffff
}




	Cover
	Table of Contents
	Hello Software Developer’s Journal Readers,
	Play-by-post RPGs are Alive and Well
	User Actions Around MVW – Part 1
	Handle one Task Within an Action Method
	Follow Encapsulation
	Treat Action as a Customization
	Summary

	User Actions Around MVW – Part 2 Associations
	Action as a Part of Another Class
	Summary

	CMS-Based Web Application Maintenance Made Easy with Integrated OO Design
	Sample Example
	System Model: Object Classes
	Database Mapping
	Extending the CMS Tables
	OO and Persistence Layers
	Code Readability
	Flexible Feature Addition
	Unlayered Code
	One Last Example: Adding A Google Map
	Conclusion

	Brand Integrity With Effective DevOps
	Moderator
	Speakers Panel
	Specific Topics include

	Actualizing The Potential Shippable Increment
	The Grand Bargain
	The Test Drive
	Credit Approval and Closing The Deal

	Languages in UIs
	Architecture
	Propagation of the architecture
	Localization
	Reusability
	A not Recommended Solution
	Vaadin Context
	Summary

	Design Patterns in Perl – Part 1
	Creational Design Patterns

	Design Patterns in Perl – Part 2
	Composition
	Inheritance
	Composition+Inheritance

	Design Patterns in Perl – Part 3
	Code Example
	Summary

	Technical Interviewing Technique: Looking for an Intuitive Narrative
	The Problem
	Interview Structure
	One Ball Case
	As Many Balls Case
	Two Balls Case
	Two Balls Case (Optimized)
	Three Balls Case
	Objective Epistemology by Ayn Rand
	Where is this Going?
	Other Interview Problems
	Conclusion
	References

	A Natural Programming Method. Programming with Natural Language
	Programming with Natural Language
	The Ambiguity
	Not Polymorphic
	Another Perspective of Code
	Not a Mere Translation
	Reducing Barriers to Entry
	Adaptive Design
	Co-working with Existing Computer Languages
	Not a Programming Paradigm

	w
	A Proper Planning is Critical
	Fragmentation and a Lack of Standardization is Unavoidable
	If You’re an Enterprise, Mobile is a Great Opportunity
	Final Words of Advice for the Uninitiated


	uat: 
	edu 6: Off



